4.7 Article

Water-in-water-in-water emulsions formed by cooling mixtures of guar, amylopectin and gelatin

Journal

FOOD HYDROCOLLOIDS
Volume 118, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2021.106763

Keywords

Aqueous multiphase system; Water-in-water emulsion; Phase separation; Guar; Amylopectin; Gelatin

Funding

  1. China Scholarship Council (CSC) research program

Ask authors/readers for more resources

It was found that gelatin phase separated at the interface between the two phases in water-in-water emulsions, forming a continuous layer at the droplet surface under certain conditions. Additionally, excess gelatin phase separated in the bulk phase but redispersed upon heating to 30 ℃ in the emulsions.
Water-in-water emulsions were formed by mixing aqueous solutions of the neutral polysaccharides guar and amylopectin. The effect of adding gelatin B on emulsions, both of a dispersed guar rich phase in a continuous amylopectin phase and the inverse, were investigated using confocal scanning laser microscopy as a function of the gelatin concentration between 0.25 and 1.5 wt% and the pH between pH 4 and pH 6. Gelatin was found to phase separate upon cooling below about 25 ?C in a narrow pH range around pH 5 both in the pure guar phase and in the pure amylopectin phase forming distinct spherical domains. The phase diagram was established as a function of the gelatin concentration and the pH. In the emulsions, the gelatin phase separated first at the interface between the two phases forming a continuous layer at the droplet surface. In some conditions the layer persisted, but in others it broke up into distinct domains. Excess gelatin phase separated in the bulk amylopectin phase, particularly when it was the continuous phase. The gelatin redispersed into the bulk phases when the emulsions were heated to 30 ?C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Agriculture, Multidisciplinary

Slowing the Starch Digestion by Structural Modification through Preparing Zein/Pectin Particle Stabilized Water-in-Water Emulsion

Jia-Feng Chen, Jian Guo, Tao Zhang, Zhi-Li Wan, Juan Yang, Xiao-Quan Yang

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY (2018)

Article Biochemistry & Molecular Biology

Production of Structured Phosphatidylcholine with High Content of DHA/EPA by Immobilized Phospholipase A1-Catalyzed Transesterification

Xiang Li, Jia-Feng Chen, Bo Yang, Dao-Ming Li, Yong-Hua Wang, Wei-Fei Wang

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2014)

Article Agriculture, Multidisciplinary

Zein Particle-Stabilized Water-In-Water Emulsion as a Vehicle for Hydrophilic Bioactive Compound Loading of Riboflavin

Jia-Feng Chen, Jian Guo, Si-Hong Liu, Wei-Qan Luo, Jin-Mei Wang, Xiao-Quan Yang

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY (2019)

Article Chemistry, Applied

Heat stability and rheological properties of concentrated soy protein/egg white protein composite microparticle dispersions

Tao Zhang, Jian Guo, Jia-Feng Chen, Jin-Mei Wang, Zhi-Li Wan, Xiao-Quan Yang

FOOD HYDROCOLLOIDS (2020)

Article Chemistry, Applied

Fabrication of stable Pickering double emulsion with edible chitosan/soy ?-conglycinin complex particles via one-step emulsification strategy

Jiafeng Chen, Zhaojiao Luo, Jinmei Wang, Qijun Ruan, Jian Guo, Xiaoquan Yang

Summary: A facile approach to create stable double emulsion using edible chitosan/soy beta-conglycinin (7S) complex nanoparticles as emulsifier via one-step emulsification is reported. The resulting Pickering double emulsion is stable and has potential applications in various fields, especially in the food industry.

FOOD HYDROCOLLOIDS (2023)

Article Biochemistry & Molecular Biology

Zein-based core-shell microcapsules for the potential delivery of algae oil and lipophilic compounds

Jia-Feng Chen, Xiao-Wei Chen, Jian Guo, Xiao-Quan Yang

FOOD & FUNCTION (2019)

Article Chemistry, Applied

Ethanol-mediated electrospinning of casein-only bead-free nanofibers

Deepika Sharma, Gregory R. Ziegler, Federico M. Harte

Summary: Fabrication of bead-free nanofibers from pure casein is challenging due to its self-aggregation tendency. In this study, the influence of pH, ethanol content, ionic environment, and casein concentration on the solubility and solution characteristics of casein-based spinning dopes was analyzed. The addition of tetrasodium pyrophosphate (TSPP) reduced bead defects and improved the properties of the nanofibers. The viscosity of the solution depended on the casein concentration, and bead-free nanofibers were obtained at a concentration higher than the entanglement concentration (C-e).

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Fate of pulse globulin proteins molecular Structure and composition on high moisture extrusion

Smriti Shrestha, Leonie Van't Hag, Victoria Haritos, Sushil Dhital

Summary: This study investigated the pasting properties, structural formation, and molecular changes of mungbean, green lentil, and yellow pea proteins during high moisture extrusion (HME). The results showed that protein composition and conformation played important roles in the structural development and molecular changes during HME.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Utilization of self-assembled soy protein nanoparticles as carriers for natural pigments: Examining non-interaction mechanisms and stability

Shi Liu, Na Sun, Kunyu Ren, Xubin Tan, Lanxin Li, Zhe Wang, Shicheng Dai, Xiaohong Tong, Huan Wang, Lianzhou Jiang

Summary: In this study, self-assembled soy protein nanoparticles (SPN) were successfully prepared and used for encapsulation of lutein, 8-carotene, and curcumin. The encapsulated natural pigments showed improved stability, especially curcumin. This study provides a new approach for extending the use of lipophilic natural edible pigments in food products.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Effect of pH on the formation mechanisms, emulsifying properties and curcumin encapsulation of oat protein isolate-high methoxy pectin complexes

Jianming Wang, Ziyun Liu, Kaiwen Zheng, Zhe Yuan, Chen Yang

Summary: By combining with high methoxyl pectin (HMP), the emulsifying properties of oat protein isolate (OPI) were improved. The OPI-HMP complex formed soluble complexes under specific pH conditions, exhibiting excellent emulsifying activity and stability, making it suitable as a delivery system for lipid soluble bioactive compounds in food and biomedical applications.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

A new strategy for maintaining the thermal stability of phycocyanin under acidic conditions: pH-induced whey protein isolate-phycocyanin coprecipitation forms composite with chitosan

Zihao Yin, Junzhe Zou, Mengwei Wang, Ruonan Huang, Yuemiao Qian, Mingyong Zeng, Fangwei Li

Summary: Phycocyanin, a protein prone to degradation under acidic conditions and unstable at high temperatures, has limited application in food. This study successfully combined phycocyanin with whey protein isolate using protein coprecipitation and chitosan coating to form composite particles, which maintained the color and colloidal stability of phycocyanin. The composite particles showed minimal color changes and retained high pigment retention rates after heating. Furthermore, the composite particles exhibited excellent antioxidant capacity. This breakthrough expands the application of phycocyanin in acidic beverages and other food forms.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Enhancing the bioavailability of quercetin via the construction of carboxymethylated curdlan/quercetin nanocomplex

Yuting Su, Qian Zhou, Hui Xu, Manting Huang, Siqian Li, Jiayi He, Ka-Wing Cheng, Mingfu Wang

Summary: By developing the CM-Cur/QT complex, the solubility and stability of quercetin were improved, leading to enhanced bioavailability. The complex showed increased bio-accessibility and antioxidant efficacy during in vitro digestion, and facilitated the internalization of quercetin in macrophages, exerting a potential synergistic anti-inflammatory effect.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Natural pH and temperature-sensitive hydrogel-emulsion carriers for co-delivery of hydrophobic and hydrophilic bioactive ingredients in the gastrointestinal tract

Sheliang Zhao, David Julian Mcclements, Xuebo Liu, Fuguo Liu

Summary: The low oral bioavailability of some bioactive ingredients is a challenge in the supplement and functional food areas. This study designs natural carriers that can simultaneously deliver both hydrophobic and hydrophilic bioactive ingredients, thereby increasing their ability to exert synergistic effects.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Engineering biodegradable controlled gelatin-zein bilayer film with improved mechanical strength and flexibility

Md Easdani, Shabbir Ahammed, Md Nazmus Saqib, Fei Liu, Fang Zhong

Summary: Compiling hydrophobic and hydrophilic proteins to form a mechanically reliable bilayer film with improved water barrier properties and hydrophobicity is challenging. By introducing cross-linkers, the film exhibits compatible and flexible surfaces, enhanced color and transparency, and controlled water vapor permeability. The bilayer film shows potential for improving value-added functional properties.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Construction and properties of curdlan gum/gellan gum binary composite gel system

Tian-Qi Zhou, Xue-Chen Wang, Ling-Yi Gao, Jia-Nan Yan, Hai-Tao Wu

Summary: This study investigated the synergetic gelation of curdlan gum (CG) and gellan gum (GG) at different ratios. The optimal gelation was achieved at a mass ratio of 1:1 and a total concentration of 0.6%. The gel properties were influenced by the CG/GG ratio, with the strongest gel observed at a ratio of 5:5. The improved gel properties were attributed to hydrogen bonds between CG and GG. The CG/GG binary composite gel exhibited increased water holding capacity as the CG/GG ratio decreased. Furthermore, the microstructure of the CG/GG gel was denser and more homogeneous, supporting its stronger gel rigidity and water holding capacity.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Porous gelatin microspheres for high loading and improved stability of anthocyanins: Serving as antioxidant factors and food freshness indicators

Jialin Sun, Zihao Wei, Changhu Xue

Summary: In this study, porous gelatin microspheres (PGMs) with surface and internal porous structure were developed for the controlled release and rapid functional response of anthocyanins (ANCs). The loading of ACNs was achieved through electrostatic interaction, resulting in a high loading capacity. ACN@PGMs exhibited long-term controlled release, improved storage stability, and ammonia responsiveness, making them suitable for applications as antioxidant factors and food freshness indicators in the food industry.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

A novel baking additive: Preparation, characterization, and application of chitosan hydrochloride/carboxymethyl starch sodium nano-gel for wheat bread

Xinlai Dou, Yanling Hao, Ying Sun, Pin Yang, Linlin Liu, Yinyuan He, Yanguo Shi, Chunhua Yang, Fenglian Chen

Summary: In this study, chitosan hydrochloride/carboxymethyl starch sodium (CHC-CMS-Na) nanogels were prepared as a baking additive and showed potential in improving bread quality.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Synergism between yellow mustard gum and κ-carrageenan studied by structural and rheological methods

Xinya Wang, H. Douglas Goff, Steve W. Cui

Summary: This study thoroughly investigated the synergistic gelation between yellow mustard gum (YMG) and kappa-carrageenan using multiple techniques. The results showed that the interaction between YMG and kappa-carrageenan was mainly polymer associations, and YMG affected the gel formation process of kappa-carrageenan.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Effect of enzymatic dephosphorylation on caprine casein micelle structure

Jielong Zhang, Dasong Liu, Xiumei Tao, Jun Tang, Xiaoyu Peng, Thom Huppertz, Xiaoming Liu, Peng Zhou

Summary: The effect of enzymatic dephosphorylation on the structure of casein micelles in caprine micellar casein concentrate was studied. The results showed that with increasing dephosphorylation, the molar mass decreased, the radii decreased, the hydration increased, and the internal protein inhomogeneity disappeared.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Highly-branched cyclic dextrin for improvement in mechanical properties and freeze-thaw stability of x-carrageenan gels

Wentao Ma, Chao Yuan, Bo Cui, Tian Gao, Li Guo, Bin Yu, Meng Zhao, Feixue Zou

Summary: This study investigated the influence of highly-branched cyclic dextrin (HBCD) on the physiochemical properties of x-carrageenan (KC) gels. The addition of HBCD significantly enhanced the storage modulus and freeze-thaw stability of KC gels. HBCD promoted the distribution of KC chains and aggregation of KC helixes, resulting in a compact network structure and reduced water loss. Furthermore, HBCD strengthened the thermal reversibility of KC gels through enhanced hydrogen-bonding interactions.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Enhanced solubility, thermal stability and antioxidant activity of resveratrol by complexation with ovalbumin amyloid-like fibrils: Effect of pH

Ya-Ru Wang, Qin Yang, Yi-Xuan Jiang, Han-Qing Chen

Summary: This study successfully improved the aqueous solubility, thermal stability, and antioxidant activity of RES by using ovalbumin fibrils as nanocarriers. The pH value was found to have an impact on the formation and properties of the complex, with the best interaction observed at pH 2.0.

FOOD HYDROCOLLOIDS (2024)