4.7 Article

Flexibility in crosstalk between H2B ubiquitination and H3 methylation in vivo

Journal

EMBO REPORTS
Volume 15, Issue 10, Pages 1077-1084

Publisher

WILEY-BLACKWELL
DOI: 10.15252/embr.201438793

Keywords

chromatin; crosstalk; Dot1; histone ubiquitination; Set1

Funding

  1. Dutch Cancer Society [KWF2009-4511]
  2. Netherlands Genomics Initiative

Ask authors/readers for more resources

Histone H2B ubiquitination is a dynamic modification that promotes methylation of histone H3K79 and H3K4. This crosstalk is important for the DNA damage response and has been implicated in cancer. Here, we show that in engineered yeast strains, ubiquitins tethered to every nucleosome promote H3K79 and H3K4 methylation from a proximal as well as a more distal site, but only if in a correct orientation. This plasticity indicates that the exact location of the attachment site, the native ubiquitin-lysine linkage and ubiquitination cycles are not critical for trans-histone crosstalk in vivo. The flexibility in crosstalk also indicates that other ubiquitination events may promote H3 methylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Biochemical Research Methods

Oxonium Ion-Guided Optimization of Ion Mobility-Assisted Glycoproteomics on the timsTOF Pro

Soumya Mukherjee, Andris Jankevics, Florian Busch, Markus Lubeck, Yang Zou, Gary Kruppa, Albert J. R. Heck, Richard A. Scheltema, Karli R. Reiding

Summary: Ion mobility enables spatial separation of ions in the gas phase, providing information about their size. The timsTOF Pro device can physically separate N-glycopeptides from nonmodified peptides and produce high-quality fragmentation spectra. This method allows for the effective selection of analytes of interest based on the clear cluster in the mobiologram formed by the glycan moieties enlarging the size of glycopeptides.

MOLECULAR & CELLULAR PROTEOMICS (2023)

Article Biochemical Research Methods

Site-Specific Activity-Based Protein Profiling Using Phosphonate Handles

Wouter van Bergen, Johannes F. Hevler, Wei Wu, Marc P. Baggelaar, Albert J. R. Heck

Summary: Most drugs target proteins, and determining the exact drug binding sites on proteins is crucial for understanding their effects. A strategy called PhosID-ABPP was developed to identify drug binding sites using immobilized metal-affinity chromatography and phosphonate affinity tags. This method successfully identified over 500 unique binding sites of the drug PF-06672131. PhosID-ABPP also revealed differences in binding sites between intact cells and cell lysates, and captured a previously elusive binding site on the epidermal growth factor receptor.

MOLECULAR & CELLULAR PROTEOMICS (2023)

Review Chemistry, Multidisciplinary

Orbitrap-Based Mass and Charge Analysis of Single Molecules

Evolene Desligniere, Amber Rolland, Eduard H. T. M. Ebberink, Victor Yin, Albert J. R. Heck

Summary: Native mass spectrometry is widely used for determining the mass of intact proteins and their biomolecular assemblies. However, it can be challenging for heterogeneous protein complexes. In 2012, an Orbitrap-based mass analyzer with extended mass range was introduced, enabling high-resolution mass spectra of large protein assemblies and single ion measurements. This led to the development of single-molecule Orbitrap-based charge detection mass spectrometry in 2020, which has opened doors for innovative research in various systems.

ACCOUNTS OF CHEMICAL RESEARCH (2023)

Article Chemistry, Analytical

Optimized Suspension Trapping Method for Phosphoproteomics Sample Preparation

Fujia Wang, Tim Veth, Marije Kuipers, Maarten Altelaar, Kelly E. Stecker

Summary: A successful mass spectrometry-based phosphoproteomics analysis relies on effective sample preparation strategies. The performance of the S-Trap protocol for phosphoproteomics studies is unclear, and the addition of phosphoric acid (PA) in the existing protocol is detrimental to downstream phosphopeptide enrichment. This study systematically evaluates the performance of the S-Trap digestion for proteomics and phosphoproteomics, and demonstrates that an optimized S-Trap approach, with trifluoroacetic acid substituted for PA, is a simple and effective method for phosphoproteomics sample preparation.

ANALYTICAL CHEMISTRY (2023)

Article Biochemistry & Molecular Biology

DOT1L regulates chromatin reorganization and gene expression during sperm differentiation

Melina Blanco, Laila El Khattabi, Clara Gobe, Marion Crespo, Manon Coulee, Alberto de la Iglesia, Come Ialy-Radio, Clementine Lapoujade, Maelle Givelet, Marion Delessard, Ivan Seller-Corona, Kosuke Yamaguchi, Nadege Vernet, Fred Van Leeuwen, Alban Lermine, Yuki Okada, Romain Daveau, Rafael Oliva, Pierre Fouchet, Ahmed Ziyyat, Delphine Pflieger, Julie Cocquet

Summary: In this study, it is found that the H3K79-methyltransferase DOT1L plays a crucial role in spermatid chromatin remodeling and gene expression regulation. The knockout of the Dot1l gene in mice resulted in less compact chromatin structure and abnormal content in spermatozoa, including the presence of transition proteins, immature protamine 2 forms, and higher levels of histones. Additionally, the Dot1l knockout also caused less compact heads and decreased motility in spermatozoa, leading to impaired fertility.

EMBO REPORTS (2023)

Article Biochemistry & Molecular Biology

Dynamic epistasis analysis reveals how chromatin remodeling regulates transcriptional bursting

Ineke Brouwer, Emma Kerklingh, Fred van Leeuwen, Tineke L. Lenstra

Summary: Using single-molecule live-cell imaging, Brouwer et al. investigate how the remodeling of promoter nucleosomes regulates transcriptional bursting. They find that at the Gal4 binding sites, RSC and Gal4 binding synergistically facilitate each burst. In contrast, nucleosome remodeling at the TATA box controls only the first burst upon galactose induction. The results reveal the importance of promoter nucleosome remodeling in regulating the kinetics of transcription.

NATURE STRUCTURAL & MOLECULAR BIOLOGY (2023)

Article Andrology

Characterization of acrosin and acrosin binding protein as novel CRISP2 interacting proteins in boar spermatozoa

Min Zhang, Riccardo Zenezini Chiozzi, Elizabeth G. Bromfield, Albert J. R. Heck, J. Bernd Helms, Bart M. Gadella

Summary: This study aimed to identify the interacting partners of CRISP2. The interactions of these binding partners were investigated under different conditions. The results suggest that CRISP2 may act as a scaffold for protein complex formation and dissociation to ensure the correct positioning of proteins required for the acrosome reaction and zona pellucida penetration.

ANDROLOGY (2023)

Article Biology

Promoting Fc-Fc interactions between anti-capsular antibodies provides strong immune protection against Streptococcus pneumoniae

Leire Aguinagalde Salazar, Maurits A. den Boer, Suzanne M. Castenmiller, Seline A. Zwarthoff, Carla de Haas, Piet C. Aerts, Frank J. Beurskens, Janine Schuurman, Albert J. R. Heck, Kok van Kessel, Suzan H. M. Rooijakkers

Summary: In this study, it is found that by modifying the structure of monoclonal antibodies (mAbs), the immune protection and bactericidal effect against Streptococcus pneumoniae can be improved. The modified mAbs effectively activate the complement system and recruit complement component C1 for bacterial clearance, enhancing the antibacterial activity against various serotypes of pneumococci. This study provides an important proof of concept for the future development of antibody therapies against encapsulated bacteria.

ELIFE (2023)

Article Biotechnology & Applied Microbiology

A universal GlycoDesign for lysosomal replacement enzymes to improve circulation time and biodistribution

Yen-Hsi Chen, Weihua Tian, Makiko Yasuda, Zilu Ye, Ming Song, Ulla Mandel, Claus Kristensen, Lorenzo Povolo, Andre R. A. Marques, Tomislav Caval, Albert J. R. Heck, Julio Lopes Sampaio, Ludger Johannes, Takahiro Tsukimura, Robert Desnick, Sergey Y. Y. Vakhrushev, Zhang Yang, Henrik Clausen

Summary: Currently available enzyme replacement therapies for lysosomal storage diseases are limited in their effectiveness due to short circulation times and suboptimal biodistribution of the therapeutic enzymes. Researchers have engineered Chinese hamster ovary (CHO) cells to produce glycoengineered enzymes, which have improved circulation time and biodistribution. This glycoengineering approach, known as Long-Acting-GlycoDesign (LAGD), may be widely applicable to lysosomal replacement enzymes to improve their circulatory stability and therapeutic efficacy.

FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY (2023)

Article Oncology

CMTM6 shapes antitumor T cell response through modulating protein expression of CD58 and PD-L1

Beiping Miao, Zhaoqing Hu, Riccardo Mezzadra, Lotte Hoeijmakers, Astrid Fauster, Shangce Du, Zhi Yang, Melanie Sator-Schmitt, Helena Engel, Xueshen Li, Caroline Broderick, Guangzhi Jin, Raquel Gomez-Eerland, Lisette Rozeman, Xin Lei, Hitoshi Matsuo, Chen Yang, Ingrid Hofland, Dennis Peters, Annegien Broeks, Elke Laport, Annika Fitz, Xiyue Zhao, Mohamed A. A. Mahmoud, Xiujian Ma, Sandrine Sander, Hai-kun Liu, Guoliang Cui, Yu Gan, Wei Wu, Yanling Xiao, Albert J. R. Heck, Wenxian Guan, Scott W. Lowe, Hugo M. Horlings, Cun Wang, Thijn R. Brummelkamp, Christian U. Blank, Ton N. M. Schumacher, Chong Sun

Summary: The dysregulation of immune checkpoint molecules allows cancer cells to escape immune destruction. CD58, an important costimulatory ligand, is found to be positively regulated by CMTM6, which also interacts with PD-L1. The presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and the response to PD-L1-PD-1 blockade.

CANCER CELL (2023)

Article Cell Biology

Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes

Dusanka Milenkovic, Jelena Misic, Johannes F. Hevler, Thibaut Molinie, Injae Chung, Ilian Atanassov, Xinping Li, Roberta Filograna, Andrea Mesaros, Arnaud Mourier, Albert J. R. Heck, Judy Hirst, Nils-Goran Larsson

Summary: The mammalian respiratory chain complexes CI, CIII2, and CIV form a stable assembly called the respirasome, which is critical for cellular bioenergetics. By studying knockin mice with decreased levels of respirasomes, researchers found that high levels of respirasomes are dispensable for maintaining bioenergetics and physiology in mice. However, the alternate functions of respirasomes, such as regulating protein stability and preventing age-associated protein aggregation, need further investigation.

CELL METABOLISM (2023)

Article Oncology

IgA antibody immunotherapy targeting GD2 is effective in preclinical neuroblastoma models

Marjolein C. Stip, Mitchell Evers, Maaike Nederend, Chilam Chan, Karli R. Reiding, Mirjam J. Damen, Albert J. R. Heck, Sofia Koustoulidou, Ruud Ramakers, Gerard C. Krijger, Remmert de Roos, Edouard Souteyrand, Annelisa M. Cornel, Miranda P. Dierselhuis, Marco Jansen, Mark de Boer, Thomas Valerius, Geert van Tetering, Jeanette H. W. Leusen, Friederike Meyer-Wentrup

Summary: Researchers engineered an antibody called IgA3.0 ch14.18, which shows promise as a new therapy for neuroblastoma. The antibody has a longer half-life, increased protein stability, and potent tumor-killing abilities.

JOURNAL FOR IMMUNOTHERAPY OF CANCER (2023)

Article Cell Biology

Deep (phospho)proteomics profiling of pre- treatment needle biopsies identifies signatures of treatment resistance in HER2+breast cancer

Donna O. Debets, Kelly E. Stecker, Anastasia Piskopou, Marte C. Liefaard, Jelle Wesseling, Gabe S. Sonke, Esther H. Lips, Maarten Altelaar

Summary: This study performs (phospho)proteomics analysis of pre-treatment HER2+ needle biopsies of early-stage invasive breast cancer to identify molecular signatures predictive of treatment response. The study finds that accurate quantification of the estrogen receptor (ER) and HER2 biomarkers, along with the assessment of associated biological features, can improve treatment outcome prediction. Additionally, the study identifies cellular mechanisms that potentially precondition tumors to resist therapy.

CELL REPORTS MEDICINE (2023)

Article Biochemistry & Molecular Biology

Key changes in bovine milk immunoglobulin G during lactation: NeuAc sialylation is a hallmark of colostrum immunoglobulin G N-glycosylation

Inge Gazi, Karli R. Reiding, Andre Groeneveld, Jan Bastiaans, Thom Huppertz, Albert J. R. Heck

Summary: We monitored the changes in bovine milk IgG over a 28-day period after calving, finding that IgG accounts for over 50% of protein content in colostrum but less than 3% in mature milk. The N-glycosylation profile of bovine milk IgG was found to be highly heterogeneous with over 40 glycoforms, and this profile changed significantly during lactation. We also identified the presence of IgG3 subtype in bovine milk, alongside IgG1 and IgG2. These findings are important for understanding calf's immune development and the nutritional value of bovine milk.

GLYCOBIOLOGY (2023)

Article Immunology

Identification of common and distinct origins of human serum and breastmilk IgA1 by mass spectrometry-based clonal profiling

Kelly A. Dingess, Max Hoek, Danique M. H. van Rijswijk, Sem Tamara, Maurits A. den Boer, Tim Veth, Mirjam J. A. Damen, Arjan Barendregt, Michelle Romijn, Hannah G. Juncker, Britt J. van Keulen, Gestur Vidarsson, Johannes B. van Goudoever, Albert Bondt, Albert J. R. Heck

Summary: The most abundant immunoglobulin in the human body is IgA and it is found in high concentrations in mucosal lining and biofluids like milk. The structure and clonal repertoire of IgA1-containing molecular assemblies were analyzed using mass spectrometry-based approach in serum and milk from three donors. The results showed that serum IgA1 consists of two distinct structural populations, monomeric IgA1 and dimeric J-chain coupled IgA1, while IgA1 in milk is present only as secretory IgA (SIgA) with various assemblies. The IgA1-Fab repertoires in serum and milk were also found to be different.

CELLULAR & MOLECULAR IMMUNOLOGY (2023)

No Data Available