4.7 Article

Double use of concentrated sweet whey for growth and spray drying of probiotics: Towards maximal viability in pilot scale spray dryer

Journal

JOURNAL OF FOOD ENGINEERING
Volume 196, Issue -, Pages 11-17

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jfoodeng.2016.10.017

Keywords

Probiotics; Spray-drying; Multi-stage drying; Sweet whey; Storage; Simulated digestion

Ask authors/readers for more resources

Spray-drying is expected to be a cost-efficient way to produce probiotic powders. Indeed, a novel simplified process was recently reported, using concentrated sweet whey (30 wt %) as a sole medium for both growth and spray drying of probiotics. The feasibility of scaling up this process was validated in the present work with a semi industrial pilot scale spray dryer. A multi-stage mild-conditions drying process, coupling spray-drying with belt drying and fluid-bed drying, was also applied in this work, in which the final probiotic survival was improved to approximately 100% (>10(9) CFU g(-1)). The change of probiotic viability in the powders was monitored during a 6-month storage, which indicated that storage temperature and moisture content of powders play crucial roles in the stability of probiotic powders. Moreover, spray-drying afforded a strain-dependent enhancement of bacterial tolerance in simulated intestinal fluid, in comparison with fresh cultures. (C) 2016 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Chemical

A reference-component coordinate system approach to model the mass transfer of a droplet with binary volatiles

Kian Siang Lim, Benu Adhikari, Jie Xiao, Xiao Dong Chen, Cordelia Selomulya, Meng Wai Woo

Summary: This study modified a theoretical framework based on reference-component centered coordinates to enable the prediction of simultaneous absorption and evaporation of droplets consisting of two volatiles. Experimental validation showed that the model reasonably predicted the mass profiles for droplet evaporation but over-predicted in the case of simultaneous absorption and evaporation of droplet.

DRYING TECHNOLOGY (2023)

Article Engineering, Chemical

Synthesis of hierarchical ZSM-5 microspheres with superior performance for catalytic methanol-to-olefin conversion

Yali Zhang, Kai Zhang, Chao Shang, Xiaoning Wang, Lei Wu, Guoqing Huang, Hao Wang, Qiming Sun, Xiao Dong Chen, Zhangxiong Wu

Summary: In this study, uniform and hierarchically macro/mesoporous ZSM-5 microspheres were successfully synthesized using a facile and green strategy combining spray-freeze drying and steaming-assisted crystallization. The hierarchical ZSM-5 catalyst exhibited superior catalytic performance in the methanol-to-olefin conversion reaction, with a prolonged lifetime and improved selectivity to ethylene and propylene compared to conventional microporous ZSM-5 and nano-sized ZSM-5.

AICHE JOURNAL (2023)

Article Chemistry, Applied

A dual-labeled fluorescent probe for visualization of dextranase activity in a simulated food digestion system

Rongjuan Sun, Weiji Liu, Timothy V. Kirk, Xiao Dong Chen

Summary: This study aims to investigate the feasibility of using fluorescent probes for bioimaging of enzyme activity in food digestion. The results show that a dual-labeled fluorescent probe can be used to quantitatively measure dextranase activity, and a linear relationship is obtained between the ratio of fluorescence signals and dextranase concentration ratio.

FOOD CHEMISTRY (2023)

Article Biochemistry & Molecular Biology

Fabrication, Evaluation, and Antioxidant Properties of Carrier-Free Curcumin Nanoparticles

Jinwei Wu, Jiaxin Chen, Zizhan Wei, Pingchuan Zhu, Bangda Li, Qing Qing, Huimin Chen, Weiying Lin, Jianyan Lin, Xuehui Hong, Fei Yu, Xiaodong Chen

Summary: Carrier-free curcumin nanoparticles (CFC NPs) were prepared by adding the DMSO solution of Cur into DI water under continuous rapid stirring. The CFC NPs exhibited a spherical shape with a diameter of 65.25 +/- 2.09 nm (PDI = 0.229 +/- 0.107) and a high loading capacity (LC) of 96.68 +/- 0.03%. Furthermore, the CFC NPs significantly improved the water dispersibility and release of Cur in vitro, and showed significantly enhanced DPPH radical scavenging activity. These results suggest that CFC NPs could be a promising vehicle for widening the applications of Cur in the food industry.

MOLECULES (2023)

Article Engineering, Chemical

Spray freeze dried niclosamide nanocrystals embedded dry powder for high dose pulmonary delivery

Shengyu Zhang, Shen Yan, Kangwei Lu, Shixuan Qiu, Xiao Dong Chen, Winston Duo Wu

Summary: Based on drug repositioning strategy, niclosamide has shown potential for treating COVID-19. However, developing effective NCL delivery formulations remains challenging. In this study, NCL-embedded dry powder for inhalation was fabricated using a novel spray freeze drying technology. By adjusting the composition and temperature, the size, morphology, crystal properties, flowability, and aerosol performance of the SFD microparticles were systematically investigated.

POWDER TECHNOLOGY (2023)

Article Engineering, Chemical

Neural network modeling of the dynamic inactivation of probiotics during single droplet drying for improved cell viability

Hong Zhu, Dongbiao Jin, Nan Fu, Xiao Dong Chen, Jie Xiao

Summary: A multi-task convolutional self-attention network (CSAN) has been developed for dynamic modeling of probiotics inactivation during single droplet drying (SDD). The model effectively learns from historical data and predicts inactivation dynamics throughout the whole drying process, outperforming many existing models in terms of prediction accuracy. By using this model, two optimal SDD conditions have been identified with high terminal solid contents (>90 wt%) and cell survival ratios (>0.65).

POWDER TECHNOLOGY (2023)

Article Biochemistry & Molecular Biology

Intestinal absorption of DHA microcapsules with different formulations based on ex vivo rat intestine and in vitro dialysis models

Zejun Hu, Peng Wu, Yiqing Chen, Luping Wang, Xia Jin, Xiao Dong Chen

Summary: In this study, an ex vivo absorption model based on the permeability of the rat small intestine was established to evaluate the intestinal absorption of DHA microcapsules with five formulations after gastrointestinal digestion. The results showed that the permeability of glucose solution increased with concentration, while the absorption rate of DHA microcapsules was low. The absorption rate was also influenced by the release of free fatty acids from the microcapsules.

FOOD & FUNCTION (2023)

Article Engineering, Chemical

New understanding from intestinal absorption model: How physiological features influence mass transfer and absorption

Yifan Qin, Xiao Dong Chen, Aibing Yu, Jie Xiao

Summary: Mathematical modeling of mass transfer and absorption in the small intestine is challenging and requires a reliable and computationally efficient predictive model. This study derives an absorption model that considers the 3D intestinal inner wall structure and can be used in a 1D distributed model. Computational fluid dynamics simulations are used to quantify the mass-transfer coefficient. The model provides insights into the influence of intestinal morphology and motility on mass transfer and absorption.

AICHE JOURNAL (2023)

Article Engineering, Chemical

Viscous flow through a thin-walled elastic hollow ellipsoid-Experiments to demonstrate a potential flowmeter

Xiaoqing Zhu, Yu Zhang, Xiao Dong Chen

Summary: The large deformation of an elastic hollow ellipsoid was investigated as a flowmeter mechanism. Relationships were found between pressure drop, deformation, flowrate, and fluid viscosity. The experiment used a silicone hollow ellipsoid with dimensions of 0.05 m (long axis), 0.03 m (short axis), and a wall thickness of 3.5 x 10(-4) +/- 4.6 x 10(-5) m. A monotonic relationship was observed between flowrate and the ellipsoid's representative diameter. The effect of viscosity on flowrate was inconclusive, but the sensitivity of the ellipsoid's expansion to spatial variations in wall thickness was noted.

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING (2023)

Article Chemistry, Applied

Impact of casein-to-whey protein ratio on gastric emptying, proteolysis, and peptidome profile of fermented milk during in vitro dynamic gastrointestinal digestion in preschool children

Hongyan Zhang, Sufang Duan, Yang Yu, Ren'an Wu, Jingjing Wang, Xiao Dong Chen, Ignatius Man-Yau Szeto, Peng Wu, Yan Jin

Summary: The effects of casein-to-whey ratios in fermented milk on gastric emptying, proteolysis and intestinal peptidome were investigated using an in vitro dynamic stomach-intestine system mimicking pre-school children digestion. The research found that the gastric emptying rate varied insignificantly among the milk samples. After 120 min digestion, the highest extent of proteolysis was observed at a casein-to-whey ratio of 2:1 due to the fewest gastric protein aggregates and relatively abundant caseins. Intestinal peptides derived from caseins or whey proteins showed a positive correlation with their parent protein content. The most abundant bioactive whey peptides were found at a casein-to-whey ratio of 1:1.5 after intestinal digestion. These findings demonstrated the importance of protein compositions in fermented milk on gastrointestinal proteolysis and peptide release in vitro, which is meaningful for future development of milk products that are more suitable for children.

FOOD CHEMISTRY (2023)

Article Chemistry, Applied

Solid state fermentation of mung beans by Bacillus subtilis subsp. natto on static, shaking flask and soft elastic tubular reactors

He Lyu, Saartje Hernalsteens, Haihua Cong, S-y Quek, Xiao Dong Chen

Summary: Fermentation of mung beans by Bacillus subtilis subsp. natto can improve their nutritional and functional properties, including an increase in soluble protein, decrease in crystallinity, and change in particle size distribution. This approach can be used to produce a food ingredient with various functional and nutritional properties, and the SETR is a viable technology for handling high solid load substrates.

FOOD SCIENCE AND TECHNOLOGY INTERNATIONAL (2023)

Article Engineering, Chemical

Preparation of curcumin-loaded MPEG-PTMC nanoparticles: Physicochemical properties, antioxidant activity, and in vivo pharmacokinetic behavior

Fei Yu, Zizhan Wei, Jiaxin Chen, Yufei Long, Qing Qing, Bangda Li, Xinyue Zhang, Huimin Chen, Tianshu Lan, Pingchuan Zhu, Peihong Shen, Wei Zeng, Jianyan Lin, Zhongquan Qi, Xuehui Hong, Xiao Dong Chen

Summary: In this study, MPEG-PTMC@Cur NPs were prepared using MPEG-PTMC as the carrier, which showed improved physicochemical stability and photochemical stability of Cur. The NPs also exhibited enhanced antioxidant activity and oral bioavailability. Therefore, MPEG-PTMC@Cur NPs could be a promising delivery system for Cur.

POWDER TECHNOLOGY (2023)

Article Engineering, Chemical

Making a Soft Elastic Pulsation Pump (SEPP)

Hao Gu, Yun Xia, Yu Zhang, Xiao Dong Chen

Summary: In this study, a soft-elastic pulsation pump (SEPP) made of silicone rubber was developed and examined. The SEPP was driven by an external squeezing mechanism and featured a silicone one-way valve to prevent backflow. The material characteristics, durability, and performance of the SEPP were evaluated, and it was found to have good protection on blood. The technical details and experimental results provided a solid foundation for developing higher capacity SEPPs, which could potentially be applied as effective ventricular assist devices.

PROCESSES (2023)

Article Engineering, Chemical

Soymilk modification by immobilized bacteria in a soft elastic tubular reactor's wall

Saartje Hernalsteens, Hai Hua Cong, Xiao Dong Chen

Summary: We developed an immobilized mixed strains system on agitated flasks and a soft elastic tubular reactor (SETR) to obtain a whole soymilk fermented product. The mix of Lactobacillus plantarum/Bacillus subtilis subsp. Natto, immobilized in gellan/xanthan/PU foam mat lining the reactor, resulted in a product with improved nutrition and reduced waste accumulation. This immobilization and SETR mixing method can be explored as a bioprocess option for non-traditional media.

JOURNAL OF FOOD ENGINEERING (2023)

Article Engineering, Environmental

Postsynthesis of β-FeOOH/SBA-15 composites via mild ozone treatment: Effective surfactant removal and perfect property preservation for enhanced arsenic adsorption

Guoqing Huang, Dongling Mao, Yali Zhang, Xiao Dong Chen, Zhangxiong Wu

Summary: This work investigated the use of ozone treatment for the postsynthesis of Fe-containing SBA-15 materials, where the surfactant was almost completely removed while maintaining other properties. The ozone treatment could effectively remove the triblock copolymer P123, while preserving the hydroxyl groups of SBA-15 and the dispersion state of Fe. The ozone-treated samples exhibited enhanced arsenic adsorption performance.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Engineering, Chemical

Effect of high-voltage electrical discharge (HVED) at high frequency on vacuum freeze-drying time and physicochemical properties of blueberries

R. Diaz-Alvarez, S. Carpentieri, G. Ferrari, G. Pataro, L. Segura-Ponce

Summary: This study evaluated the effect of high voltage electrical discharge (HVED) on the freeze-drying process of blueberries, and found that HVED pretreatment can enhance freeze-drying rates and improve the quality of the final product.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Process engineering of semi-continuous boiling of massecuites based on Digital Twin of sucrose crystallization

V. I. Tuzhilkin, S. M. Petrov, N. M. Podgornova, N. D. Lukin

Summary: The study aims to simulate the process of isobaric evaporative crystallization of sucrose and propose a three-stage crystallization technology for semi-continuous boiling of massecuites. Through computer simulation and experimental verification, optimal parameters were determined to enhance the efficiency of crystallization.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Combination of nanoparticles and gelatin-genipin hydrogel enhances the antioxidant activity, stability, and release properties of curcumin

Seong Hwan Yu, Do-Yeong Kim, Youjin Baek, Hyeon Gyu Lee

Summary: This study investigated the effects of nanoencapsulation and gel incorporation on the antioxidant activity, stability, and release profile of curcumin. The results showed that CUR-loaded nanoparticles and CUR NPs-filled gelatin-genipin gels had significantly higher antioxidant activity, stability, and in vitro release profile compared to free CUR. The GL/GP-CUR NPs exhibited the highest antioxidant activity and increased stability, while the CUR NPs had a faster release rate. These findings suggest that GL/GP-CUR NPs have potential as an effective delivery system for CUR in the food industry.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Influence of polysaccharide-based co-encapsulants on efficiency, stability, and release of vitamins B12 and D3 in multilayered microcapsules

Linlin He, Shihong Hu, Gang Zhang, Xiao Wang, Yanna Zhao, Qingpeng Wang, Min Liu, Zhengping Wang, Prakash Sangeeta, Zhuang Ding

Summary: This study developed solid microcapsules containing co-loaded vitamin B12 and D3 using a W1/O/W2 emulsions and spray-drying method. The addition of polysaccharides as co-encapsulants improved the morphological characteristics, encapsulation efficiency, storage stability, and gastrointestinal simulation of the microcapsules. The electrostatic bonding with chitosan and multilayer protection from the W1/O/W2 structure contributed to the high encapsulation efficiency of vitB12. Incorporating polysaccharides into W2 enhanced the particle integrity of the dried powders and improved the retention rate and encapsulation efficiency of vitamins. Sodium carboxymethylcellulose showed the best protection for vitB12 and lower degradation rates for vitD3, while sodium alginate exhibited controlled release and the highest cumulative release under simulated gastric and intestinal conditions, respectively.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

A novel simulation model to analyze rice intermittent drying considering glass transition concept

Ehsan Nasrnia, Morteza Sadeghi, Ali Raeisi Isa-Abadi, Seyed Ahmad Mireei

Summary: A novel mathematical model considering the concept of glass transition was developed for rice intermittent drying process. The model utilized the real 3D body-fitted geometry of rice kernel and was validated through experiments. The glass transition behavior of the rice kernels and the distributions of temperature and moisture at each stage were analyzed.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Portable organophosphorus pesticide detection device based on controllable microfluidic and luminol composite nanofibers

Haoran Pang, Jiaqing Xie, Xiaoyu Meng, Ruqian Sun, Jun Chen, Chengli Guo, Tianfeng Zhou

Summary: A portable organophosphorus pesticide detection device equipped with microfluidic and luminol composite nanofibers was developed in this study. By optimizing the microfluidic chip design and the mass fraction of luminol particles, efficient detection of pesticide residues was achieved.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Band selection pipeline for maturity stage classification in bell peppers: From full spectrum to simulated camera data

J. Munoz-Postigo, E. M. Valero, M. A. Martinez-Domingo, F. J. Lara, J. L. Nieves, J. Romero, J. Hernandez-Andres

Summary: This paper presents a workflow for classifying the maturity of bell peppers using hyperspectral imaging and machine learning. The approach utilizes spectral reflectance to determine the number of maturity stages and employs optimized bands for accurate classification, achieving satisfactory results.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Optical measurement of the shear stress and velocity distribution in an idealized deglutition process

Artem Skrypnik, Sascha Heitkam, Christoph Gerstenberg, Eric Morelle, Christopher McHardy, Cornelia Rauh

Summary: The rheological properties of food play a crucial role in the physical interaction between food and the mouth during chewing and swallowing. This study focuses on the compression of liquid foams to simulate the idealized swallowing process and investigates the flow conditions and their impact on foam properties. The results provide insights into the haptic perception in the mouth during swallowing.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Modelling swelling effects in real espresso extraction using a 1-dimensional coarse-grained model

Chaojie Mo, Luciano Navarini, Furio Suggi Liverani, Marco Ellero

Summary: This study investigates the effects of swelling on espresso extraction by incorporating a particle-level swelling model into a one-dimensional bed-level extraction model. The results show that swelling only slightly affects the yield and strength at a fixed flow rate, but considerably enhances the strength at a fixed pressure drop. The finer the coffee particles, the more pronounced the enhancement. It is suggested that better control of yield and strength can be achieved by fixing the flow rate in an espresso machine. It is also indicated that numerical extraction simulations, when properly incorporated with relevant physical effects, can be used to predict the extraction kinetics and guide the design and production of espresso machines.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Characterization of methyltetrahydrophthalic anhydride esterified corn starch and their ability in stabilizing Pickering emulsion

Yang Zhong, Yi Lin, Mingxing Yang, Xiaodan Zeng, Dayu Liu, Wenlong Liu, Weijun Chen

Summary: Methyltetrahydrophthalic anhydride (MeTHPA) esterified corn starches (MeCS) with degrees of substitution (DS) ranging from 0.0066 to 0.072 were prepared and found to be effective in stabilizing Pickering emulsion. The modification of MeTHPA damaged the crystal structure of corn starch, roughened its surface structure, and increased its contact angle, which were positively correlated with the DS of MeCS. The particle size of MeCS increased and then decreased with increasing DS, with the smallest size observed for MeCS with a DS of 0.072. The Pickering emulsions stabilized by MeCS with a DS of 0.072 exhibited better stability compared to those stabilized by MeCS with lower DS, which can be attributed to their smaller particle size and higher viscosity. MeCS with a DS of 0.072, at a concentration of 3% (w/v), could maintain emulsion stability even after 50 days of storage. These findings suggest that MeCS with appropriate DS and concentration levels could be effective particle stabilizers for Pickering emulsions.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Vacuum impregnation assisted simultaneous micronutrients fortification and phytic acid reduction in lentils

Shubhajit Sarkhel, Anupam Roy

Summary: This study developed a vacuum impregnation technique to enhance the micronutrient content and bioavailability in lentils and reduce phytic acid. The results showed that vacuum impregnation led to higher migration of micronutrients and significantly reduced phytic acid without impacting the quality characteristics. The developed process achieved a substantial reduction in phytic acid-to-mineral molar ratio.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Biorefining of liquid insect fractions by microfiltration to increase functionality

L. J. H. Sweers, C. M. M. Lakemond, V. Fogliano, R. M. Boom, M. Mishyna, J. K. Keppler

Summary: This study investigated the use of microfiltration as a gentle processing technique for decontamination and fractionation of edible insects. The results showed that microfiltration effectively removed contaminants and produced distinct fractions with improved properties.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Prediction of mixture pelleting based on compression parameters

Wanfeng Sun, Yu Sun, Yu Wang, Haomeng He

Summary: In this study, a prediction model for the pelleting performance of multi-component mixed powders was proposed, and it was validated by conducting single pelleting experiments on mixtures of different edible powders.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Active film strips to extend the shelf life of fruits: Multibranched PLA-gallic acid as an antioxidant/oxygen scavenger in a case study of bananas (Musa AAA group)

Saowaluk Taechutrakul, Thananchai Piroonpan, Wanvimol Pasanphan

Summary: This original research developed active polylactic acid (PLA) film strips functionalized with gallic acid (GA) to extend the shelf-life of bananas. The PLA/mPLA-GA film strips exhibited a homogeneous matrix with improved mechanical properties and showed outstanding antioxidant and oxygen scavenging effects. The results suggest that PLA/mPLA-GA film strips show promise as an active bioplastic for extending the shelf-life of bananas and other fruits.

JOURNAL OF FOOD ENGINEERING (2024)

Article Engineering, Chemical

Experimental study on the impact of key material properties on flowability of sucrose and maltodextrin

Julien Dupas, Florent Baldeweck, Vincent Meunier

Summary: The flow performance of food powders is crucial in product development, as it can affect the dosing and filling processes. This study investigates the influence of various parameters on the flowability of carbohydrate powders, such as particle size and moisture content.

JOURNAL OF FOOD ENGINEERING (2024)