4.7 Review

Resistant starches: A smart alternative for the development of functional bread and other starch-based foods

Journal

FOOD HYDROCOLLOIDS
Volume 121, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2021.106949

Keywords

Resistant starch; Dietary fiber; Bioactivity; Wheat-based food; Gluten-free food

Ask authors/readers for more resources

Resistant starches act as dietary fiber in the body and have beneficial effects on regulating glycemia, cholesterolemia, gut microbiota, preventing metabolic diseases, improving immune response, and managing obesity and weight. They can be used as alternatives to enrich fiber in various foods and are a smart option for incorporating fiber in gluten-free products.
Resistant starches (RS) are those that by localization, physical, or chemical causes, are unavailable for enzymatic attack, thus acting as dietary fiber in our organism. Several beneficial effects of the RS intake have been reported, among them, their ability to modulate glycemia, cholesterolemia, and the homeostasis of gut microbiota, the prevention of colonic cancer and metabolic diseases, the improvement of the immune response, and the contribution to the management of obesity and body weight. RS can be used as an alternative to obtain fiberenriched foods such as bread, muffins, cakes, and cookies, as well as pasta and noodles, without drastically modifying the sensory and technological aspects that consumers expect from these traditional wheat-based products. They are also a smart alternative to incorporate fiber in gluten-free products. The present review summarizes the main recent advances on the study of the metabolic effects of RS intake, several examples of RS obtained from different sources in the native state, retrograded or chemically modified, and also addresses examples of the employment of different types of RS in the formulation and characterization of more healthful starch-based products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Food Science & Technology

Techno-functional properties of wheat flour-resistant starch mixtures applied to breadmaking

Carlos Gabriel Arp, Maria Jimena Correa, Angela Zuleta, Cristina Ferrero

INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY (2017)

Article Food Science & Technology

Rheological and Microstructural Characterization of Wheat Dough Formulated with High Levels of Resistant Starch

Carlos Gabriel Arp, Maria Jimena Correa, Cristina Ferrero

FOOD AND BIOPROCESS TECHNOLOGY (2018)

Article Food Science & Technology

High-Amylose Resistant Starch as a Functional Ingredient in Breads: a Technological and Microstructural Approach

Carlos Gabriel Arp, Maria Jimena Correa, Cristina Ferrero

FOOD AND BIOPROCESS TECHNOLOGY (2018)

Article Food Science & Technology

Production and Characterization of Type III Resistant Starch from Native Wheat Starch Using Thermal and Enzymatic Modifications

Carlos Gabriel Arp, Maria Jimena Correa, Cristina Ferrero

FOOD AND BIOPROCESS TECHNOLOGY (2020)

Article Chemistry, Applied

Kinetic study of staling in breads with high-amylose resistant starch

Carlos Gabriel Arp, Maria Jimena Correa, Cristina Ferrero

FOOD HYDROCOLLOIDS (2020)

Article Chemistry, Applied

Improving quality: Modified celluloses applied to bread dough with high level of resistant starch

Carlos Gabriel Arp, Maria Jimena Correa, Cristina Ferrero

Summary: Additives in the baking industry have long been used to correct the quality deficiency of wheat flour and have expanded their action field to include the production of new functional foods. In this study, two modified celluloses were evaluated as additives in bread dough enriched with resistant maize starch, showing improvement in technological quality and gluten network structure. The results suggest that the addition of modified celluloses can lead to a more cross-linked gluten network and improved stability, resulting in high fiber-enriched, good-quality bread.

FOOD HYDROCOLLOIDS (2021)

Article Agriculture, Multidisciplinary

Modified celluloses improve the proofing performance and quality of bread made with a high content of resistant starch

Carlos Gabriel Arp, Maria Jimena Correa, Cristina Ferrero

Summary: The use of hydroxypropylmethylcellulose and carboxymethylcellulose as improvers in wheat bread with high level of maize resistant starch (RS) replacement was analyzed. Both modified celluloses effectively improved the quality of breads, increasing specific volume, crumb porosity, water retention, and mechanical properties preservation during storage. The quality decrease resulting from the replacement of wheat flour by high level of RS can be compensated by the use of structuring agents such as hydroxypropylmethylcellulose and carboxymethylcellulose.

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE (2023)

Article Chemistry, Applied

Ethanol-mediated electrospinning of casein-only bead-free nanofibers

Deepika Sharma, Gregory R. Ziegler, Federico M. Harte

Summary: Fabrication of bead-free nanofibers from pure casein is challenging due to its self-aggregation tendency. In this study, the influence of pH, ethanol content, ionic environment, and casein concentration on the solubility and solution characteristics of casein-based spinning dopes was analyzed. The addition of tetrasodium pyrophosphate (TSPP) reduced bead defects and improved the properties of the nanofibers. The viscosity of the solution depended on the casein concentration, and bead-free nanofibers were obtained at a concentration higher than the entanglement concentration (C-e).

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Fate of pulse globulin proteins molecular Structure and composition on high moisture extrusion

Smriti Shrestha, Leonie Van't Hag, Victoria Haritos, Sushil Dhital

Summary: This study investigated the pasting properties, structural formation, and molecular changes of mungbean, green lentil, and yellow pea proteins during high moisture extrusion (HME). The results showed that protein composition and conformation played important roles in the structural development and molecular changes during HME.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Utilization of self-assembled soy protein nanoparticles as carriers for natural pigments: Examining non-interaction mechanisms and stability

Shi Liu, Na Sun, Kunyu Ren, Xubin Tan, Lanxin Li, Zhe Wang, Shicheng Dai, Xiaohong Tong, Huan Wang, Lianzhou Jiang

Summary: In this study, self-assembled soy protein nanoparticles (SPN) were successfully prepared and used for encapsulation of lutein, 8-carotene, and curcumin. The encapsulated natural pigments showed improved stability, especially curcumin. This study provides a new approach for extending the use of lipophilic natural edible pigments in food products.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Effect of pH on the formation mechanisms, emulsifying properties and curcumin encapsulation of oat protein isolate-high methoxy pectin complexes

Jianming Wang, Ziyun Liu, Kaiwen Zheng, Zhe Yuan, Chen Yang

Summary: By combining with high methoxyl pectin (HMP), the emulsifying properties of oat protein isolate (OPI) were improved. The OPI-HMP complex formed soluble complexes under specific pH conditions, exhibiting excellent emulsifying activity and stability, making it suitable as a delivery system for lipid soluble bioactive compounds in food and biomedical applications.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

A new strategy for maintaining the thermal stability of phycocyanin under acidic conditions: pH-induced whey protein isolate-phycocyanin coprecipitation forms composite with chitosan

Zihao Yin, Junzhe Zou, Mengwei Wang, Ruonan Huang, Yuemiao Qian, Mingyong Zeng, Fangwei Li

Summary: Phycocyanin, a protein prone to degradation under acidic conditions and unstable at high temperatures, has limited application in food. This study successfully combined phycocyanin with whey protein isolate using protein coprecipitation and chitosan coating to form composite particles, which maintained the color and colloidal stability of phycocyanin. The composite particles showed minimal color changes and retained high pigment retention rates after heating. Furthermore, the composite particles exhibited excellent antioxidant capacity. This breakthrough expands the application of phycocyanin in acidic beverages and other food forms.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Enhancing the bioavailability of quercetin via the construction of carboxymethylated curdlan/quercetin nanocomplex

Yuting Su, Qian Zhou, Hui Xu, Manting Huang, Siqian Li, Jiayi He, Ka-Wing Cheng, Mingfu Wang

Summary: By developing the CM-Cur/QT complex, the solubility and stability of quercetin were improved, leading to enhanced bioavailability. The complex showed increased bio-accessibility and antioxidant efficacy during in vitro digestion, and facilitated the internalization of quercetin in macrophages, exerting a potential synergistic anti-inflammatory effect.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Natural pH and temperature-sensitive hydrogel-emulsion carriers for co-delivery of hydrophobic and hydrophilic bioactive ingredients in the gastrointestinal tract

Sheliang Zhao, David Julian Mcclements, Xuebo Liu, Fuguo Liu

Summary: The low oral bioavailability of some bioactive ingredients is a challenge in the supplement and functional food areas. This study designs natural carriers that can simultaneously deliver both hydrophobic and hydrophilic bioactive ingredients, thereby increasing their ability to exert synergistic effects.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Engineering biodegradable controlled gelatin-zein bilayer film with improved mechanical strength and flexibility

Md Easdani, Shabbir Ahammed, Md Nazmus Saqib, Fei Liu, Fang Zhong

Summary: Compiling hydrophobic and hydrophilic proteins to form a mechanically reliable bilayer film with improved water barrier properties and hydrophobicity is challenging. By introducing cross-linkers, the film exhibits compatible and flexible surfaces, enhanced color and transparency, and controlled water vapor permeability. The bilayer film shows potential for improving value-added functional properties.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Construction and properties of curdlan gum/gellan gum binary composite gel system

Tian-Qi Zhou, Xue-Chen Wang, Ling-Yi Gao, Jia-Nan Yan, Hai-Tao Wu

Summary: This study investigated the synergetic gelation of curdlan gum (CG) and gellan gum (GG) at different ratios. The optimal gelation was achieved at a mass ratio of 1:1 and a total concentration of 0.6%. The gel properties were influenced by the CG/GG ratio, with the strongest gel observed at a ratio of 5:5. The improved gel properties were attributed to hydrogen bonds between CG and GG. The CG/GG binary composite gel exhibited increased water holding capacity as the CG/GG ratio decreased. Furthermore, the microstructure of the CG/GG gel was denser and more homogeneous, supporting its stronger gel rigidity and water holding capacity.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Porous gelatin microspheres for high loading and improved stability of anthocyanins: Serving as antioxidant factors and food freshness indicators

Jialin Sun, Zihao Wei, Changhu Xue

Summary: In this study, porous gelatin microspheres (PGMs) with surface and internal porous structure were developed for the controlled release and rapid functional response of anthocyanins (ANCs). The loading of ACNs was achieved through electrostatic interaction, resulting in a high loading capacity. ACN@PGMs exhibited long-term controlled release, improved storage stability, and ammonia responsiveness, making them suitable for applications as antioxidant factors and food freshness indicators in the food industry.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

A novel baking additive: Preparation, characterization, and application of chitosan hydrochloride/carboxymethyl starch sodium nano-gel for wheat bread

Xinlai Dou, Yanling Hao, Ying Sun, Pin Yang, Linlin Liu, Yinyuan He, Yanguo Shi, Chunhua Yang, Fenglian Chen

Summary: In this study, chitosan hydrochloride/carboxymethyl starch sodium (CHC-CMS-Na) nanogels were prepared as a baking additive and showed potential in improving bread quality.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Synergism between yellow mustard gum and κ-carrageenan studied by structural and rheological methods

Xinya Wang, H. Douglas Goff, Steve W. Cui

Summary: This study thoroughly investigated the synergistic gelation between yellow mustard gum (YMG) and kappa-carrageenan using multiple techniques. The results showed that the interaction between YMG and kappa-carrageenan was mainly polymer associations, and YMG affected the gel formation process of kappa-carrageenan.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Effect of enzymatic dephosphorylation on caprine casein micelle structure

Jielong Zhang, Dasong Liu, Xiumei Tao, Jun Tang, Xiaoyu Peng, Thom Huppertz, Xiaoming Liu, Peng Zhou

Summary: The effect of enzymatic dephosphorylation on the structure of casein micelles in caprine micellar casein concentrate was studied. The results showed that with increasing dephosphorylation, the molar mass decreased, the radii decreased, the hydration increased, and the internal protein inhomogeneity disappeared.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Highly-branched cyclic dextrin for improvement in mechanical properties and freeze-thaw stability of x-carrageenan gels

Wentao Ma, Chao Yuan, Bo Cui, Tian Gao, Li Guo, Bin Yu, Meng Zhao, Feixue Zou

Summary: This study investigated the influence of highly-branched cyclic dextrin (HBCD) on the physiochemical properties of x-carrageenan (KC) gels. The addition of HBCD significantly enhanced the storage modulus and freeze-thaw stability of KC gels. HBCD promoted the distribution of KC chains and aggregation of KC helixes, resulting in a compact network structure and reduced water loss. Furthermore, HBCD strengthened the thermal reversibility of KC gels through enhanced hydrogen-bonding interactions.

FOOD HYDROCOLLOIDS (2024)

Article Chemistry, Applied

Enhanced solubility, thermal stability and antioxidant activity of resveratrol by complexation with ovalbumin amyloid-like fibrils: Effect of pH

Ya-Ru Wang, Qin Yang, Yi-Xuan Jiang, Han-Qing Chen

Summary: This study successfully improved the aqueous solubility, thermal stability, and antioxidant activity of RES by using ovalbumin fibrils as nanocarriers. The pH value was found to have an impact on the formation and properties of the complex, with the best interaction observed at pH 2.0.

FOOD HYDROCOLLOIDS (2024)