4.4 Article

A study of the interactions that stabilize DNA frayed wires

Journal

BIOPHYSICAL CHEMISTRY
Volume 147, Issue 3, Pages 123-129

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bpc.2010.01.003

Keywords

G-quadruplexes; DNA; Frayed wires; Circular dichroism; Hoogsteen hydrogen bonds; Raman spectroscopy

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

Oligodeoxyribonucleotides (ODNs) with long, terminal runs of consecutive guanines, and either a dA or dT tract at the other end form higher-order structures called DNA frayed wires. These aggregates self-assemble into species consisting of 2, 3, 4, 5, ... associated strands. Some of the remarkable features of these structures are their extreme thermostability and resistance to chemical denaturants and nucleases. However, the nature of the molecular interactions that stabilize these structures remains unclear. Based on dimethyl sulfate (DMS) methylation results, our group previously proposed DNA frayed wires to be a unique set of nucleic-acid assemblies in which the N7 of guanine does not participate in the guanine-guanine interactions. To probe the hydrogen bonding involved in the stabilization of d(A(15)G(15)) frayed wires, we used Raman spectroscopy in which the DNA sample is held in photonic crystal fibers. This technique significantly enhances the signals thus allowing the use of very low laser power. Based on our results for d(A(15)G(15)) and those of incorporating the isoelectronic guanine analog pyrazolo[3,4,-d]pyrimidine or PPG, into a frayed wire-forming sequence, we provide evidence that these structures are based on the G-quadruplex model. Furthermore, from the Raman spectrum, we observed markers that are consistent with the presence of deoxyguanosine residues in the syn conformation, this suggests the presence of anti-parallel G-quadruplexes. To identify the species that contain syn guanine residues, we used circular dichroism and gel electrophoresis to study an ODN in which all of the guanine residues were brominated, d(A(15)(8-Br)G(15)). In the presence of potassium, d(A(15)(8-Br)G(15)) forms what appears to be an anti-parallel dimeric G-quadruplex. To our knowledge, this is the first report of a DNA sequence having all its guanine residues replaced by 8-bromo-guanine and maintaining its ability to form a G-quadruplex structure. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemistry & Molecular Biology

TPE conjugated islet amyloid polypeptide probe for detection of peptide oligomers

Hsiao-Chieh Tsai, Ching-Hong Huang, Ling-Hsien Tu

Summary: Islet amyloid polypeptide (IAPP) is a polypeptide hormone co-secreted with insulin by pancreatic beta-cells. It tends to aggregate into soluble oligomers, which are considered one of the hallmarks of type II diabetes. This study successfully grafted the aggregation-induced emission molecule TPE onto IAPP, allowing real-time monitoring of IAPP oligomer formation and potential application in the diagnosis of T2D.

BIOPHYSICAL CHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Thermally stabilized chondroitin sulfate-hemoglobin nanoparticles and their interaction with bioactive compounds

Aristeidis Papagiannopoulos, Aggeliki Sklapani, Nikolaos Spiliopoulos

Summary: This study presents a method for preparing Hb-based nanoparticles (NPs) using a fully biocompatible approach. These NPs have a spherical structure with a diameter ranging from 50 to 100 nm, and can form electrostatic complexes with CS at pH 4. The NPs can be pH-tunable and stable in solutions with high salt content, making them suitable for nanodelivery of nutrients and drugs.

BIOPHYSICAL CHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Osmotic stress studies of G-protein-coupled receptor rhodopsin activation

Andrey V. Struts, Alexander V. Barmasov, Steven D. E. Fried, Kushani S. K. Hewage, Suchithranga M. D. C. Perera, Michael F. Brown

Summary: This article summarizes and reviews the osmotic stress studies of G-protein-coupled receptor rhodopsin. It is found that water plays an important role in the activation of the receptor, with at least 80 water molecules entering the receptor in the transition to the active state. If water influx is prevented, the functional transition of the receptor is reversed. These findings reveal the phenomenon of solvent swelling in the activation mechanism of rhodopsin, with water acting as an allosteric modulator of function for rhodopsin-like receptors in lipid membranes.

BIOPHYSICAL CHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Palmitoylation modifies transmembrane adaptor protein PAG for ordered lipid environment: A molecular dynamics simulation study

Maria Chiara Saija, Adela Melcrova, Wojciech Pajerski, Itay Schachter, Matti Javanainen, Marek Cebecauer, Lukasz Cwiklik

Summary: We used molecular dynamics simulations to investigate the effects of palmitoylation on a transmembrane peptide in different lipid environments. The study found that palmitoylation reduces the peptide's impact on membrane thickness, particularly in lipid-ordered and boundary environments. The hydrophobic palmitoyl chains on the peptide did not significantly affect membrane hydration. Interestingly, the boundary membrane environment was found to be highly compatible with the palmitoylated peptide. These findings have important implications for understanding cell signaling, membrane organization, and optimizing lipid membrane-based drug delivery systems.

BIOPHYSICAL CHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Pomegranate peel, chokeberry leaves and Ironwort extract as novel natural inhibitors of amylin aggregation and cellular toxicity in pancreatic β cells

Achanta Rishisree, Brayer Mallory, Karnaukhova Elena, Jankovic Teodora, Zdunic Gordana, Savikin Katarina, Jeremic Aleksandar

Summary: Pomegranate peel, ironwort, and chokeberry leaf extracts exhibit anti-aggregative and antitoxic properties against human amylin. They can prevent amyloidosis and cell loss in patients with Type 2 Diabetes Mellitus.

BIOPHYSICAL CHEMISTRY (2024)