4.7 Article

Agent selection and protective effects during single droplet drying of bacteria

Journal

FOOD CHEMISTRY
Volume 166, Issue -, Pages 206-214

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2014.06.010

Keywords

Lactobacillus plantarum; Lactose; Protective mechanism; Single droplet drying; Trehalose; Whey protein isolate

Funding

  1. Australian government

Ask authors/readers for more resources

The protective mechanisms of whey protein isolate (WPI), trehalose, lactose, and skim milk on Lactobacillus plantarum A17 during convective droplet drying has been explored. A single droplet drying technique was used to monitor cell survival, droplet temperature and corresponding changes in mass. WPI and skim milk provided the highest protection amongst the materials tested. In situ analysis of the intermediate stage of drying revealed that for WPI and skim milk, crust formation reduces the rate of sudden temperature increase thereby imparting less stress on the cells. Irreversible denaturation of the WPI components might have also contributed to the protection of the cells. Skim milk, however, 'loses' the protective behaviour towards the latter stages of drying. This indicates that the concentration of the WPI components could be another possible factor determining the sustained protective behaviour during the later stages of drying when the moisture content is low. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Chemical

A reference-component coordinate system approach to model the mass transfer of a droplet with binary volatiles

Kian Siang Lim, Benu Adhikari, Jie Xiao, Xiao Dong Chen, Cordelia Selomulya, Meng Wai Woo

Summary: This study modified a theoretical framework based on reference-component centered coordinates to enable the prediction of simultaneous absorption and evaporation of droplets consisting of two volatiles. Experimental validation showed that the model reasonably predicted the mass profiles for droplet evaporation but over-predicted in the case of simultaneous absorption and evaporation of droplet.

DRYING TECHNOLOGY (2023)

Article Engineering, Chemical

Synthesis of hierarchical ZSM-5 microspheres with superior performance for catalytic methanol-to-olefin conversion

Yali Zhang, Kai Zhang, Chao Shang, Xiaoning Wang, Lei Wu, Guoqing Huang, Hao Wang, Qiming Sun, Xiao Dong Chen, Zhangxiong Wu

Summary: In this study, uniform and hierarchically macro/mesoporous ZSM-5 microspheres were successfully synthesized using a facile and green strategy combining spray-freeze drying and steaming-assisted crystallization. The hierarchical ZSM-5 catalyst exhibited superior catalytic performance in the methanol-to-olefin conversion reaction, with a prolonged lifetime and improved selectivity to ethylene and propylene compared to conventional microporous ZSM-5 and nano-sized ZSM-5.

AICHE JOURNAL (2023)

Article Chemistry, Applied

A dual-labeled fluorescent probe for visualization of dextranase activity in a simulated food digestion system

Rongjuan Sun, Weiji Liu, Timothy V. Kirk, Xiao Dong Chen

Summary: This study aims to investigate the feasibility of using fluorescent probes for bioimaging of enzyme activity in food digestion. The results show that a dual-labeled fluorescent probe can be used to quantitatively measure dextranase activity, and a linear relationship is obtained between the ratio of fluorescence signals and dextranase concentration ratio.

FOOD CHEMISTRY (2023)

Article Biochemistry & Molecular Biology

Fabrication, Evaluation, and Antioxidant Properties of Carrier-Free Curcumin Nanoparticles

Jinwei Wu, Jiaxin Chen, Zizhan Wei, Pingchuan Zhu, Bangda Li, Qing Qing, Huimin Chen, Weiying Lin, Jianyan Lin, Xuehui Hong, Fei Yu, Xiaodong Chen

Summary: Carrier-free curcumin nanoparticles (CFC NPs) were prepared by adding the DMSO solution of Cur into DI water under continuous rapid stirring. The CFC NPs exhibited a spherical shape with a diameter of 65.25 +/- 2.09 nm (PDI = 0.229 +/- 0.107) and a high loading capacity (LC) of 96.68 +/- 0.03%. Furthermore, the CFC NPs significantly improved the water dispersibility and release of Cur in vitro, and showed significantly enhanced DPPH radical scavenging activity. These results suggest that CFC NPs could be a promising vehicle for widening the applications of Cur in the food industry.

MOLECULES (2023)

Article Engineering, Chemical

Spray freeze dried niclosamide nanocrystals embedded dry powder for high dose pulmonary delivery

Shengyu Zhang, Shen Yan, Kangwei Lu, Shixuan Qiu, Xiao Dong Chen, Winston Duo Wu

Summary: Based on drug repositioning strategy, niclosamide has shown potential for treating COVID-19. However, developing effective NCL delivery formulations remains challenging. In this study, NCL-embedded dry powder for inhalation was fabricated using a novel spray freeze drying technology. By adjusting the composition and temperature, the size, morphology, crystal properties, flowability, and aerosol performance of the SFD microparticles were systematically investigated.

POWDER TECHNOLOGY (2023)

Article Engineering, Chemical

Neural network modeling of the dynamic inactivation of probiotics during single droplet drying for improved cell viability

Hong Zhu, Dongbiao Jin, Nan Fu, Xiao Dong Chen, Jie Xiao

Summary: A multi-task convolutional self-attention network (CSAN) has been developed for dynamic modeling of probiotics inactivation during single droplet drying (SDD). The model effectively learns from historical data and predicts inactivation dynamics throughout the whole drying process, outperforming many existing models in terms of prediction accuracy. By using this model, two optimal SDD conditions have been identified with high terminal solid contents (>90 wt%) and cell survival ratios (>0.65).

POWDER TECHNOLOGY (2023)

Article Biochemistry & Molecular Biology

Intestinal absorption of DHA microcapsules with different formulations based on ex vivo rat intestine and in vitro dialysis models

Zejun Hu, Peng Wu, Yiqing Chen, Luping Wang, Xia Jin, Xiao Dong Chen

Summary: In this study, an ex vivo absorption model based on the permeability of the rat small intestine was established to evaluate the intestinal absorption of DHA microcapsules with five formulations after gastrointestinal digestion. The results showed that the permeability of glucose solution increased with concentration, while the absorption rate of DHA microcapsules was low. The absorption rate was also influenced by the release of free fatty acids from the microcapsules.

FOOD & FUNCTION (2023)

Article Engineering, Chemical

New understanding from intestinal absorption model: How physiological features influence mass transfer and absorption

Yifan Qin, Xiao Dong Chen, Aibing Yu, Jie Xiao

Summary: Mathematical modeling of mass transfer and absorption in the small intestine is challenging and requires a reliable and computationally efficient predictive model. This study derives an absorption model that considers the 3D intestinal inner wall structure and can be used in a 1D distributed model. Computational fluid dynamics simulations are used to quantify the mass-transfer coefficient. The model provides insights into the influence of intestinal morphology and motility on mass transfer and absorption.

AICHE JOURNAL (2023)

Article Engineering, Chemical

Viscous flow through a thin-walled elastic hollow ellipsoid-Experiments to demonstrate a potential flowmeter

Xiaoqing Zhu, Yu Zhang, Xiao Dong Chen

Summary: The large deformation of an elastic hollow ellipsoid was investigated as a flowmeter mechanism. Relationships were found between pressure drop, deformation, flowrate, and fluid viscosity. The experiment used a silicone hollow ellipsoid with dimensions of 0.05 m (long axis), 0.03 m (short axis), and a wall thickness of 3.5 x 10(-4) +/- 4.6 x 10(-5) m. A monotonic relationship was observed between flowrate and the ellipsoid's representative diameter. The effect of viscosity on flowrate was inconclusive, but the sensitivity of the ellipsoid's expansion to spatial variations in wall thickness was noted.

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING (2023)

Article Chemistry, Applied

Impact of casein-to-whey protein ratio on gastric emptying, proteolysis, and peptidome profile of fermented milk during in vitro dynamic gastrointestinal digestion in preschool children

Hongyan Zhang, Sufang Duan, Yang Yu, Ren'an Wu, Jingjing Wang, Xiao Dong Chen, Ignatius Man-Yau Szeto, Peng Wu, Yan Jin

Summary: The effects of casein-to-whey ratios in fermented milk on gastric emptying, proteolysis and intestinal peptidome were investigated using an in vitro dynamic stomach-intestine system mimicking pre-school children digestion. The research found that the gastric emptying rate varied insignificantly among the milk samples. After 120 min digestion, the highest extent of proteolysis was observed at a casein-to-whey ratio of 2:1 due to the fewest gastric protein aggregates and relatively abundant caseins. Intestinal peptides derived from caseins or whey proteins showed a positive correlation with their parent protein content. The most abundant bioactive whey peptides were found at a casein-to-whey ratio of 1:1.5 after intestinal digestion. These findings demonstrated the importance of protein compositions in fermented milk on gastrointestinal proteolysis and peptide release in vitro, which is meaningful for future development of milk products that are more suitable for children.

FOOD CHEMISTRY (2023)

Article Chemistry, Applied

Solid state fermentation of mung beans by Bacillus subtilis subsp. natto on static, shaking flask and soft elastic tubular reactors

He Lyu, Saartje Hernalsteens, Haihua Cong, S-y Quek, Xiao Dong Chen

Summary: Fermentation of mung beans by Bacillus subtilis subsp. natto can improve their nutritional and functional properties, including an increase in soluble protein, decrease in crystallinity, and change in particle size distribution. This approach can be used to produce a food ingredient with various functional and nutritional properties, and the SETR is a viable technology for handling high solid load substrates.

FOOD SCIENCE AND TECHNOLOGY INTERNATIONAL (2023)

Article Engineering, Chemical

Preparation of curcumin-loaded MPEG-PTMC nanoparticles: Physicochemical properties, antioxidant activity, and in vivo pharmacokinetic behavior

Fei Yu, Zizhan Wei, Jiaxin Chen, Yufei Long, Qing Qing, Bangda Li, Xinyue Zhang, Huimin Chen, Tianshu Lan, Pingchuan Zhu, Peihong Shen, Wei Zeng, Jianyan Lin, Zhongquan Qi, Xuehui Hong, Xiao Dong Chen

Summary: In this study, MPEG-PTMC@Cur NPs were prepared using MPEG-PTMC as the carrier, which showed improved physicochemical stability and photochemical stability of Cur. The NPs also exhibited enhanced antioxidant activity and oral bioavailability. Therefore, MPEG-PTMC@Cur NPs could be a promising delivery system for Cur.

POWDER TECHNOLOGY (2023)

Article Engineering, Chemical

Making a Soft Elastic Pulsation Pump (SEPP)

Hao Gu, Yun Xia, Yu Zhang, Xiao Dong Chen

Summary: In this study, a soft-elastic pulsation pump (SEPP) made of silicone rubber was developed and examined. The SEPP was driven by an external squeezing mechanism and featured a silicone one-way valve to prevent backflow. The material characteristics, durability, and performance of the SEPP were evaluated, and it was found to have good protection on blood. The technical details and experimental results provided a solid foundation for developing higher capacity SEPPs, which could potentially be applied as effective ventricular assist devices.

PROCESSES (2023)

Article Engineering, Chemical

Soymilk modification by immobilized bacteria in a soft elastic tubular reactor's wall

Saartje Hernalsteens, Hai Hua Cong, Xiao Dong Chen

Summary: We developed an immobilized mixed strains system on agitated flasks and a soft elastic tubular reactor (SETR) to obtain a whole soymilk fermented product. The mix of Lactobacillus plantarum/Bacillus subtilis subsp. Natto, immobilized in gellan/xanthan/PU foam mat lining the reactor, resulted in a product with improved nutrition and reduced waste accumulation. This immobilization and SETR mixing method can be explored as a bioprocess option for non-traditional media.

JOURNAL OF FOOD ENGINEERING (2023)

Article Engineering, Environmental

Postsynthesis of β-FeOOH/SBA-15 composites via mild ozone treatment: Effective surfactant removal and perfect property preservation for enhanced arsenic adsorption

Guoqing Huang, Dongling Mao, Yali Zhang, Xiao Dong Chen, Zhangxiong Wu

Summary: This work investigated the use of ozone treatment for the postsynthesis of Fe-containing SBA-15 materials, where the surfactant was almost completely removed while maintaining other properties. The ozone treatment could effectively remove the triblock copolymer P123, while preserving the hydroxyl groups of SBA-15 and the dispersion state of Fe. The ozone-treated samples exhibited enhanced arsenic adsorption performance.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Chemistry, Applied

The first harmonised total diet study in Portugal: Vitamin D occurrence and intake assessment

M. Graca Dias, Elsa Vasco, Francisco Ravasco, Lufsa Oliveira

Summary: This study estimated the vitamin D intake of "adults" and "elderly" populations in Portugal using the TDS methodology. The results showed that the majority of people had inadequate vitamin D intake, well below the Dietary Reference Values.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

The digestion fates of lipids with different unsaturated levels in people with different age groups

Yanan Wang, Jiachen Shi, Yong-Jiang Xu, Chin-Ping Tan, Yuanfa Liu

Summary: This study investigates the variations in lipid digestion profiles among individuals of different ages using in vitro digestion models. The findings suggest that adults have a more comprehensive lipid digestion compared to infants, and infants tend to release shorter chain length and more saturated free fatty acids during digestion. Additionally, the particle sizes in the stomach of the elderly were consistently larger. This study enhances our understanding of how lipids with different degrees of unsaturation undergo digestion in diverse age groups.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Fabrication and characterization of chitosan-pectin emulsion-filled hydrogel prepared by cold-set gelation to improve bioaccessibility of lipophilic bioactive compounds

Hyunjong Yu, Huisu Kim, Pahn-Shick Chang

Summary: Chitosan-pectin emulsion-filled hydrogel (EFH) was developed to enhance the bioaccessibility of lipophilic bioactive compounds through intestinal delivery. The EFH, prepared without crosslinking agents, demonstrated improved mechanical strength and compactness with higher pectin concentration. It retained the emulsion at pH 2.0 and released it at pH 7.4, resulting in enhanced release of free fatty acids and improved bioaccessibility of curcumin.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

The effect of lactic acid bacteria fermentation on physicochemical properties of starch from fermented proso millet flour

Tongze Zhang, Siqi Hong, Jia-Rong Zhang, Pin-He Liu, Siyi Li, Zixian Wen, Jianwei Xiao, Guirong Zhang, Olivier Habimana, Nagendra P. Shah, Zhongquan Sui, Harold Corke

Summary: Lactic acid fermentation significantly affects the morphology and physicochemical properties of proso millet starch, including the formation of surface indentations and small pores, decrease in gelatinization temperatures, and changes in hardness and adhesiveness.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Novel competitive electrochemical impedance biosensor for the ultrasensitive detection of umami substances based on Pd/Cu-TCPP(Fe)

Liqin Kong, Feng Hong, Peng Luan, Yiping Chen, Yaoze Feng, Ming Zhu

Summary: This study presents a novel impedance biosensor using composite nanomaterials and T1R1 as a signal probe, which can competitively and ultra-sensitively detect umami intensity. The biosensor exhibits exceptional analytical performance and is suitable for food flavor evaluation.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Identification and comparison of milk fat globule membrane and whey proteins from Selle Français, Welsh pony, and Tieling Draft horse mare's milk

Kunying Lv, Yixin Yang, Qilong Li, Ran Chen, Liang Deng, Yiwei Zhang, Ning Jiang

Summary: Horse's milk, with its high nutritional value and low allergenic proteins, could be a substitute for cow's milk in infant consumption. A proteomic method was used to identify and compare milk fat globule membrane (MFGM) and whey proteins from different horse breeds. The study found differences in protein composition and functionality, which could support the development of formulas more suitable for human infants.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Phenols and saliva effect on virgin olive oil aroma release: A chemical and sensory approach

Enrique Jacobo Diaz-Montana, Helene Brignot, Ramon Aparicio-Ruiz, Thierry Thomas- Danguin, Maria Teresa Morales

Summary: Sensory perception of virgin olive oil is influenced by phenols and volatiles, which are affected by the composition of the oil and biological factors. This study investigated the effect of saliva and phenols on the release of volatiles, and found that the presence of phenols decreased the release of saturated volatiles.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Preparation and properties of pH-sensitive cationic starch nanoparticles

Wei Zhou, Rui Zhang, Zhen Cai, Fangfang Wu, Yong Hu, Chao Huang, Kun Hu, Yun Chen

Summary: Environmentally friendly and outstanding pH-responsive cationic starch nanoparticles (CSNP) were prepared from pH-sensitive starch. CSNP exhibited nanosize and regular sphere, highly free-flowing molecular chains, and demonstrated excellent pH responsiveness through multiple emulsion/demulsification transitions.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Direct seeding compromised the vitamin C content of baby vegetables and the glucosinolate content of mature vegetables in Asian leafy brassicas

Andrea Koo, Vinayak Ghate, Weibiao Zhou

Summary: This study suggests that direct seeding may negatively affect the nutritional quality of crops, causing a decrease in ascorbic acid, vitamin K, and total glucosinolate content.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

ACE inhibitory peptides from enzymatic hydrolysate of fermented black sesame seed: Random forest-based optimization, screening, and molecular docking analysis

Tonghao Du, Yazhou Xu, Xiaoyan Xu, Shijin Xiong, Linli Zhang, Biao Dong, Jinqing Huang, Tao Huang, Muyan Xiao, Tao Xiong, Mingyong Xie

Summary: This study successfully improved the ACE inhibitory activity of black sesame seeds by fermenting them with Lactobacillus Plantarum NCU116 and hydrolyzing them using acid protease. The RF-PSO model was used to predict the ACE inhibitory activity during the hydrolysis process. Eight peptides with ACE inhibitory activity were identified from fermented black sesame seed hydrolysates after separation and screening.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Exploration of digestion-resistant immunodominant epitopes in shrimp (Penaeus vannamei) allergens

Yao Liu, Songyi Lin, Kexin Liu, Shan Wang, Qiaozhen Liu, Na Sun

Summary: This study analyzed the structural changes of shrimp proteins during digestion, predicted the immunodominant epitopes, and validated their allergenicity. The results showed that shrimp proteins were degraded into peptides during digestion, but still carried IgE epitopes that trigger allergic reactions.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Effect of milling on in vitro Digestion-Induced release and bioaccessibility of active compounds in rice

Tiantian Fu, Hongwei Cao, Yu Zhang, Xiao Guan

Summary: This study investigates the impact of milling on the active components in rice, with a focus on the stability and bioaccessibility of phenols, VB1, and alpha-GABA during cooking and digestion. The findings show that milling exacerbates the instability of gamma-GABA during cooking and VB1 during digestion, and it affects the bioaccessibility of these active compounds.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Unraveling proteome changes of Sunit lamb meat in different feeding regimes and its relationship to flavor analyzed by TMT-labeled quantitative proteomic

Zhihao Yang, Yanru Hou, Min Zhang, Puxin Hou, Chang Liu, Lu Dou, Xiaoyu Chen, Lihua Zhao, Lin Su, Ye Jin

Summary: This study investigated the molecular mechanism of feeding regimes on lamb flavor by using TMT labeling combined with MS. The results showed that pasture-fed groups had higher levels of amino acids and volatile flavor substances compared to concentrate-fed groups. Additionally, several differentially abundant proteins associated with lamb flavor were identified.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Mechanism of aroma enhancement methods in accelerating Congou black tea acidification subjected to room temperature storage

Zixuan Xie, De Zhang, Junyu Zhu, Qianqian Luo, Jun Liu, Jingtao Zhou, Xiaoyong Wang, Yuqiong Chen, Zhi Yu, Dejiang Ni

Summary: This study investigated the acidification of aroma-enhanced black tea during storage. Analysis of non-volatile substances and organic acids using UPLC-Q-TOF/MS and HPLC revealed a decrease in soluble sugars and amino acids, while an increase in organic acids such as oxalic acid, malic acid, and quinic acid. In vitro experiments further demonstrated that the acidification is a result of the decomposition of sugars and amino acids by heating, as well as the oxidation of aromatic aldehydes. Additionally, the study showed that the taste composition of tea infusion is altered, with reduced amino acids, catechins, soluble sugars, and flavonoids. This research provides a theoretical basis for improving the quality of black tea.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Immobilizing amyloglucosidase on inorganic hybrid nanoflowers to prepare time-temperature integrators for chilled pork quality monitoring

Lin Wang, Falai Ma, Zihan Li, Yan Zhang

Summary: This study developed time-temperature integrators based on amyloglucosidase@Cu3(PO4)2 nanoflowers for monitoring the freshness of chilled pork. The results showed that the integrators were highly reliable and accurate in predicting the quality of chilled pork.

FOOD CHEMISTRY (2024)