4.3 Review

Molecular regulation of MCU: Implications in physiology and disease

Journal

CELL CALCIUM
Volume 74, Issue -, Pages 86-93

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2018.06.006

Keywords

Mitochondria; Calcium; Oxidants; MCU; MICU1; MCUR1; EMRE; MCUb; SLC25A23; Channel; MiST; Miro1; Magnesium

Categories

Funding

  1. NIH [R01GM109882, R01HL086699, R01HL119306, 1S10RR027327]
  2. AHA fellowship [17PRE33660720]
  3. NIH K99/R00 grant [1K99HL138268-01]
  4. NATIONAL CENTER FOR RESEARCH RESOURCES [S10RR027327] Funding Source: NIH RePORTER
  5. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL119306, R01HL086699, K99HL138268] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM109882] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Ca2+ flux across the inner mitochondrial membrane (IMM) regulates cellular bioenergetics, intra-cellular cytoplasmic Ca2+ signals, and various cell death pathways. Ca2+ entry into the mitochondria occurs due to the highly negative membrane potential (Delta psi(m)) through a selective inward rectifying MCU channel. In addition to being regulated by various mitochondrial matrix resident proteins such as MICUs, MCUb, MCUR1 and EMRE, the channel is transcriptionally regulated by upstream Ca2+ cascade, post transnational modification and by divalent cations. The mode of regulation either inhibits or enhances MCU channel activity and thus regulates mitochondrial metabolism and cell fate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Cell Biology

Development of chemical tools based on GSK-7975A to study store-operated calcium entry in cells

Dominic Tscherrig, Rajesh Bhardwaj, Daniel Biner, Jan Dernic, Daniela Ross-Kaschitza, Christine Peinelt, Matthias A. Hediger, Martin Lochner

Summary: Changes in Ca2+ levels regulate many physiological functions, and the endoplasmic reticulum is the major Ca2+ store in cells. Store-operated calcium entry (SOCE) is a refilling process that involves protein-protein interactions between Ca2+ sensing STIM in the ER and Orai proteins in the plasma membrane, forming selective Ca2+ channels. Abnormal SOCE is associated with diseases and cancers, making STIM and Orai important therapeutic targets. Novel GSK-7975A-based molecular probes have been developed for studying SOCE in different cells and settings.

CELL CALCIUM (2024)

Article Cell Biology

Nanojunctions: Specificity of Ca2+signaling requires nano-scale architecture of intracellular membrane contact sites

Nicola Fameli, Cornelis van Breemen, Klaus Groschner

Summary: The study provides evidence for the importance of junctional membrane architecture in cellular function. Through modeling and prediction, it is shown that nano-scale membrane spacing plays a crucial role in junctional ER Ca2+ refilling and signaling efficiency. Additionally, interactions between Ca2+ and the phospholipid membrane surface are suggested to support interfacial Ca2+ transport and receptor targeting. This research introduces a new concept in pathophysiology.

CELL CALCIUM (2024)

Article Cell Biology

Transcriptional, biochemical, and immunohistochemical analyses of CaMKKI3/2 splice variants that co-localize with CaMKIV in spermatids

Satomi Ohtsuka, Yumi Miyai, Hiroyuki Mima, Masaki Magari, Yoichi Chiba, Futoshi Suizu, Hiroyuki Sakagami, Masaki Ueno, Hiroshi Tokumitsu

Summary: This study characterized the splice variants of mouse CaMKKI3/2 and found that CaMKKI3-3 and I3-3x were functionally active and likely to be bona fide CaMKIV kinases involved in the regulation of spermiogenesis.

CELL CALCIUM (2024)