4.7 Review

Materials, photophysics and device engineering of perovskite light-emitting diodes

Journal

REPORTS ON PROGRESS IN PHYSICS
Volume 84, Issue 4, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-6633/abefba

Keywords

perovskites; light-emitting diodes; photophysics; device engineering; materials

Funding

  1. Guangdong Major Project of Basic and Applied Basic Research [2019B030302007]
  2. National Natural Science Foundation of China [51903086, 62075065]
  3. China Postdoctoral Science Foundation [2019M650197, 2020T130204]
  4. European Research Council (ERC) under the European Union [639750]
  5. European Research Council (ERC) [639750] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

The article provides a comprehensive review of the newly developed lighting technology based on metal halide perovskites, covering materials, photophysics, and device engineering. It focuses on the compositional engineering of perovskite structures, physics underlying photo- and electroluminescence, and strategies for boosting device performance in perovskite light-emitting diodes. Key concepts include balancing electron/hole injection, suppression of parasitic carrier losses, improvement of photoluminescence quantum yield, and enhancement of light extraction.
Here we provide a comprehensive review of a newly developed lighting technology based on metal halide perovskites (i.e. perovskite light-emitting diodes) encompassing the research endeavours into materials, photophysics and device engineering. At the outset we survey the basic perovskite structures and their various dimensions (namely three-, two- and zero-dimensional perovskites), and demonstrate how the compositional engineering of these structures affects the perovskite light-emitting properties. Next, we turn to the physics underpinning photo- and electroluminescence in these materials through their connection to the fundamental excited states, energy/charge transport processes and radiative and non-radiative decay mechanisms. In the remainder of the review, we focus on the engineering of perovskite light-emitting diodes, including the history of their development as well as an extensive analysis of contemporary strategies for boosting device performance. Key concepts include balancing the electron/hole injection, suppression of parasitic carrier losses, improvement of the photoluminescence quantum yield and enhancement of the light extraction. Overall, this review reflects the current paradigm for perovskite lighting, and is intended to serve as a foundation to materials and device scientists newly working in this field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Dual Sub-Cells Modification Enables High-Efficiency n-i-p Type Monolithic Perovskite/Organic Tandem Solar Cells

Qin Yao, Yue-Min Xie, Yingzhi Zhou, Qifan Xue, Xin Xu, Yujia Gao, Tianqi Niu, Linghao Chu, Zhisheng Zhou, Francis R. Lin, Alex K. -Y. Jen, Tingting Shi, Hin-Lap Yip, Yong Cao

Summary: This study uses an ionic liquid, methylammonium acetate (MAAc), and bathocuproine (BCP) to modify wide-bandgap perovskite sub-cells and small-bandgap organic solar cells. MAAc effectively heals the defects in the perovskite film, improving the energy conversion efficiency, while BCP acts as a space layer to prevent direct contact between ZnO and the organic bulk-heterojunction, mitigating efficiency loss. The integration of these modified sub-cells enables the fabrication of monolithic n-i-p structured tandem solar cells with a maximum PCE of 22.43%.

ADVANCED FUNCTIONAL MATERIALS (2023)

Review Chemistry, Physical

Device Performance of Emerging Photovoltaic Materials (Version 3)

Osbel Almora, Derya Baran, Guillermo C. Bazan, Carlos I. Cabrera, Sule Erten-Ela, Karen Forberich, Fei Guo, Jens Hauch, Anita W. Y. Ho-Baillie, T. Jesper Jacobsson, Rene A. J. Janssen, Thomas Kirchartz, Nikos Kopidakis, Maria A. Loi, Richard R. Lunt, Xavier Mathew, Michael D. McGehee, Jie Min, David B. Mitzi, Mohammad K. Nazeeruddin, Jenny Nelson, Ana F. Nogueira, Ulrich W. Paetzold, Barry P. Rand, Uwe Rau, Henry J. Snaith, Eva Unger, Lidice Vaillant-Roca, Chenchen Yang, Hin-Lap Yip, Christoph J. Brabec

Summary: This article summarizes the best achievements in the performance of emerging photovoltaic devices in various research subjects, as reported in peer-reviewed articles since August 2021. The article provides updated graphs, tables, and analyses of performance parameters, and compares them based on the photovoltaic bandgap energy and average visible transmittance. The scope of the report is expanded to include triple junction solar cells.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Multidisciplinary

Hot Carrier Cooling and Trapping in Atomically Thin WS2 Probed by Three-Pulse Femtosecond Spectroscopy

Tong Wang, Thomas R. Hopper, Navendu Mondal, Sihui Liu, Chengning Yao, Xijia Zheng, Felice Torrisi, Artem A. Bakulin

Summary: Transition metal dichalcogenides (TMDs) have excellent semiconductor properties, making them promising materials for next-generation optoelectronic and electronic devices. Recent studies have reported the ultrafast carrier cooling rate in TMDs and the slowing effect by hot-phonon bottleneck (HPB) at high excitation densities. However, quantitative descriptions of HPB in TMDs and the effects of carrier-carrier interactions on cooling are still lacking. In this study, using femtosecond pump-push-probe spectroscopy, the scattering of hot carriers with optical phonons, cold carriers, and defects in a benchmark TMD monolayer of polycrystalline WS2 is systematically characterized.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials

Ben P. Carwithen, Thomas R. Hopper, Ziyuan Ge, Navendu Mondal, Tong Wang, Rozana Mazlumian, Xijia Zheng, Franziska Krieg, Federico Montanarella, Georgian Nedelcu, Martin Kroll, Miguel Albaladejo Siguan, Jarvist M. Frost, Karl Leo, Yana Vaynzof, Maryna I. Bodnarchuk, Maksym V. Kovalenko, Artem A. Bakulin

Summary: In this study, the relaxation of hot carriers in lead halide perovskites (LHPs) and the role of quantum confinement in nanosystems were examined. Ultrafast pump-push-probe spectroscopy was used to study carrier cooling in different size-controlled LHP nanomaterials. The results showed that dimensional confinement has a significant impact on carrier-phonon and carrier-carrier interactions, highlighting its potential for engineering LHP optoelectronic materials.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions

Baobing Fan, Wenkai Zhong, Wei Gao, Huiting Fu, Francis R. Lin, Reese W. -Y. Wong, Ming Liu, Chenhui Zhu, Cheng Wang, Hin-Lap Yip, Feng Liu, Alex K. -Y. Jen

Summary: Sequentially deposited organic solar cells (SD-OSCs) have received great attention due to their ability to achieve a more favorable morphology. However, the processing of SD-OSCs is challenging in preventing the penetration of small-molecule acceptors into the polymer donor layer. In this study, solid additives with varied electrostatic potential distributions and steric hinderance are introduced to investigate their effect on vertical component distribution.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Deciphering the Roles of MA-Based Volatile Additives for a-FAPbI3 to Enable Efficient Inverted Perovskite Solar Cells

Leyu Bi, Qiang Fu, Zixin Zeng, Yunfan Wang, Francis R. Lin, Yuanhang Cheng, Hin-Lap Yip, Sai Wing Tsang, Alex K. -Y. Jen

Summary: In this study, the roles of chloride-based additives and methylammonium-based additives in inverted FAPbI3-based perovskite solar cells were systematically investigated. It was found that these additives have different effects on the crystallization and phase transition of FAPbI3. By optimizing the amount of MACl, the highest efficiency of inverted FAPbI3-based perovskite solar cells was achieved.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Correlation of Local Isomerization Induced Lateral and Terminal Torsions with Performance and Stability of Organic Photovoltaics

Baobing Fan, Wei Gao, Rui Zhang, Werner Kaminsky, Francis R. Lin, Xinxin Xia, Qunping Fan, Yanxun Li, Yidan An, Yue Wu, Ming Liu, Xinhui Lu, Wen Jung Li, Hin-Lap Yip, Feng Gao, Alex K. -Y. Jen

Summary: Organic photovoltaics (OPVs) have made significant progress recently, thanks to the use of well-designed non-fullerene acceptors (NFAs) with conjugated side-groups. Researchers have developed a new class of NFAs with localisomerized conjugated side-groups and studied their impact on device performance and stability. A device based on one of the isomers achieved an impressive efficiency of 18.5% and exhibited excellent photo- and thermal stability. A similar approach was applied to another polymer donor, resulting in an even higher efficiency of 18.8%. This work highlights the effectiveness of local isomerization in enhancing the photovoltaic performance and stability of OPVs based on fused ring NFAs.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Physical

All-Inorganic Perovskite-Based Monolithic Perovskite/Organic Tandem Solar Cells with 23.21% Efficiency by Dual-Interface Engineering

Shuang-Qiao Sun, Xiuwen Xu, Qi Sun, Qin Yao, Yating Cai, Xin-Yi Li, Yan-Lin Xu, Wei He, Min Zhu, Xuan Lv, Francis R. Lin, Alex K. -Y. Jen, Tingting Shi, Hin-Lap Yip, Man-Keung Fung, Yue-Min Xie

Summary: This study develops a dual-interface engineering approach to improve the performance of all-inorganic wide-bandgap CsPbI2Br-based front sub-cells in perovskite/organic tandem solar cells (POTSCs). By mitigating the defects and carrier recombination induced by interface defects and perovskite grain boundaries, the CsPbI2Br-based front sub-cells achieve a high power conversion efficiency (PCE) of 17.0% and open-circuit voltage (V-OC) of 1.347 V. Furthermore, by integrating these dual-interface engineered front sub-cells with narrow-bandgap PM6:CH1007-based rear sub-cells, a record PCE of 23.21% is obtained for the POTSCs.

ADVANCED ENERGY MATERIALS (2023)

Review Chemistry, Physical

Influence of Component Properties on the Photovoltaic Performance of Monolithic Perovskite/Organic Tandem Solar Cells: Sub-Cell, Interconnecting Layer, and Photovoltaic Parameters

Yue-Min Xie, Qin Yao, Hin-Lap Yip, Yong Cao

Summary: Wide-bandgap perovskite sub-cells (WPSCs)-based tandem solar cells have attracted significant interest due to their ability to surpass the Shockley-Queisser limit. Monolithic perovskite/organic tandem solar cells (POTSCs) integrating WPSCs and small-bandgap organic sub-cells (SOSCs) are popular due to their simple fabrication method and compatibility with flexible devices. This study reviews existing p-i-n type WPSC-based p-i-n POTSCs and n-i-p type WPSC-based n-i-p POTSCs, highlighting their advantages and limitations, and discusses the influence of tandem device component properties on photovoltaic performance and existing device modification methods.

SMALL METHODS (2023)

Article Materials Science, Multidisciplinary

Roadmap on commercialization of metal halide perovskite photovoltaics

Shien-Ping Feng, Yuanhang Cheng, Hin-Lap Yip, Yufei Zhong, Patrick W. K. Fong, Gang Li, Annie Ng, Cong Chen, Luigi Angelo Castriotta, Fabio Matteocci, Luigi Vesce, Danila Saranin, Aldo Di Carlo, Puqun Wang, Jian Wei Ho, Yi Hou, Fen Lin, Armin G. Aberle, Zhaoning Song, Yanfa Yan, Xu Chen, Yang (Michael) Yang, Ali Asgher Syed, Ishaq Ahmad, Tiklun Leung, Yantao Wang, JingYang Lin, Alan Man Ching Ng, Yin Li, Firouzeh Ebadi, Wolfgang Tress, Giles Richardson, Chuangye Ge, Hanlin Hu, Masoud Karimipour, Fanny Baumann, Kenedy Tabah, Carlos Pereyra, Sonia R. Raga, Haibing Xie, Monica Lira-Cantu, Mark Khenkin, Iris Visoly-Fisher, Eugene A. Katz, Yana Vaynzof, Rosario Vidal, Guicheng Yu, Haoran Lin, Shuchen Weng, Shifeng Wang, Aleksandra B. Djurisic

Summary: Perovskite solar cells (PSCs) are highly promising in terms of power conversion efficiency, but commercialization still faces unresolved problems and obstacles. This article provides a concise summary of outstanding issues, challenges, and progress made in addressing them, offering expert viewpoints across various topics related to PSC commercialization. It aims to serve as a valuable resource for researchers in the field and facilitate discussions to overcome the outstanding challenges in this fast-developing area.

JOURNAL OF PHYSICS-MATERIALS (2023)

Review Nanoscience & Nanotechnology

Advances in the Application of Perovskite Materials

Lixiu Zhang, Luyao Mei, Kaiyang Wang, Yinhua Lv, Shuai Zhang, Yaxiao Lian, Xiaoke Liu, Zhiwei Ma, Guanjun Xiao, Qiang Liu, Shuaibo Zhai, Shengli Zhang, Gengling Liu, Ligang Yuan, Bingbing Guo, Ziming Chen, Keyu Wei, Aqiang Liu, Shizhong Yue, Guangda Niu, Xiyan Pan, Jie Sun, Yong Hua, Wu-Qiang Wu, Dawei Di, Baodan Zhao, Jianjun Tian, Zhijie Wang, Yang Yang, Liang Chu, Mingjian Yuan, Haibo Zeng, Hin-Lap Yip, Keyou Yan, Wentao Xu, Lu Zhu, Wenhua Zhang, Guichuan Xing, Feng Gao, Liming Ding

Summary: Recently, there has been a surge in research on metal halide perovskite materials due to the significant improvement in the photovoltaic performance of perovskite solar cells. The exceptional optoelectronic properties and defect tolerance of metal halide perovskite make it suitable for various applications. This article provides a comprehensive review of the current progress and future prospects of metal halide perovskite materials in different applications including traditional optoelectronic devices and cutting-edge technologies such as neuromorphic devices and pressure-induced emission. The review highlights the fundamental knowledge, current progress, and challenges in each application, aiming to provide an overview of the development status and future research directions for metal halide perovskite materials and devices.

NANO-MICRO LETTERS (2023)

Article Chemistry, Multidisciplinary

Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials

Ben P. Carwithen, Thomas R. Hopper, Ziyuan Ge, Navendu Mondal, Tong Wang, Rozana Mazlumian, Xijia Zheng, Franziska Krieg, Federico Montanarella, Georgian Nedelcu, Martin Kroll, Miguel Albaladejo Siguan, Jarvist M. Frost, Karl Leo, Yana Vaynzof, Maryna I. Bodnarchuk, Maksym V. Kovalenko, Artem A. Bakulin

Summary: This study investigates the carrier cooling process in size-controlled lead halide perovskite nanomaterials using ultrafast pump-push-probe spectroscopy. The results show that there is only a weak size effect on the cooling dynamics in cuboidal nanocrystals, while the hot phonon bottleneck effect commonly observed in bulk perovskites is suppressed in two-dimensional systems.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Hot Carrier Cooling and Trapping in Atomically Thin WS2 Probed by Three-Pulse Femtosecond Spectroscopy

Tong Wang, Thomas R. Hopper, Navendu Mondal, Sihui Liu, Chengning Yao, Xijia Zheng, Felice Torrisi, Artem A. Bakulin

Summary: Transition metal dichalcogenides (TMDs) have potential applications in next-generation optoelectronic and electronic devices due to their outstanding semiconducting properties. However, there is still a lack of detailed understanding of the carrier cooling mechanisms in TMDs.

ACS NANO (2023)

No Data Available