4.7 Article

Cooperative autonomous traffic organization method for connected automated vehicles in multi-intersection road networks

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.trc.2019.12.018

Keywords

Connected automated vehicle; Multi-intersection road network; Trajectory optimization; Route planning; Cooperative autonomous traffic organization method

Funding

  1. National Key Research and Development Program of China [2018YFB1600500]
  2. National Natural Science Foundation of China [U1564212, U1664262]

Ask authors/readers for more resources

Connected automated vehicles (CAVs) have been currently considered as promising solutions for realization of envisioned autonomous traffic management systems in the future. CAVs can achieve high desired traffic efficiency and provide safe, energy-saving, and comfortable ride experience for passengers. However, in order to practically implement such autonomous systems based on CAVs, there exist several significant challenges to be dealt with, such as coupled spatiotemporal constraints on CAVs' trajectories at unsignalized intersections, multiple objectives for trajectory optimization in road segments, and heterogeneous decision-making behaviors of CAVs in road networks with highly dynamic traffic demand. In this paper, we propose a cooperative autonomous traffic organization method for CAVs in multi-intersection road networks. The methodological framework consists of threefold components: an autonomous crossing strategy based on a conflict resolution approach at unsignalized intersections, multi-objective trajectory optimization in road segments, and a composite strategy for route planning considering heterogeneous decision-making behaviors of CAVs based on social and individual benefit, respectively. Specifically, we first identify a set of potential conflict points of different CAVs' spatial trajectories at the intersection, and then design different minimum safe time headways to resolve conflicts. Under the constraints of entry and exit conditions at adjacent intersections, we propose a multi-objective optimal control model by jointly considering vehicle safety, energy conservation, and ride comfort, and then analytically derive a closed-form solution for optimizing the CAVs' trajectories. Furthermore, with the purpose to adapt dynamic traffic demand, we propose a composite strategy for route planning by coordinating heterogeneous decision-making behaviors of CAVs in road networks. Finally, extensive simulation experiments have been performed to validate our proposed method and to demonstrate its advantage over conventional baseline schemes in terms of global traffic efficiency. Additional numerical results are also provided to shed light on the impact of the proportion of CAVs with heterogeneous decision-making behaviors on the global system performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Transportation Science & Technology

A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting

Pinlong Cai, Yunpeng Wang, Guangquan Lu, Peng Chen, Chuan Ding, Jianping Sun

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES (2016)

Article Engineering, Civil

Tunable and Transferable RBF Model for Short-Term Traffic Forecasting

Pinlong Cai, Yunpeng Wang, Guangquan Lu

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (2019)

Article Physics, Multidisciplinary

Incremental path planning: Reservation system in V2X environment

Daocheng Fu, Pinlong Cai, Yilun Lin, Song Mao, Licheng Wen, Yikang Li

Summary: This paper introduces a new path planning method called Incremental Path Planning (IPP), which considers traffic flow as a superposition of spatiotemporal paths. Paths are planned incrementally based on the remaining spatiotemporal resources and travel demands, leading to improved traffic efficiency and driving experience.

PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS (2023)

Proceedings Paper Automation & Control Systems

A modified PCA-based approach for process monitoring

Jingxin Zhang, Hao Chen, Pinlong Cai

2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC) (2017)

Proceedings Paper Computer Science, Artificial Intelligence

An Adaptive Multi-Kernel RBF Model Using State Matching

Pinlong Cai, Hao Chen, Jingxin Zhang

2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS) (2017)

Article Transportation Science & Technology

3-Strategy evolutionary game model for operation extensions of subway networks

Yue Zhao, Liujiang Kang, Huijun Sun, Jianjun Wu, Nsabimana Buhigiro

Summary: This study proposes a 2-population 3-strategy evolutionary game model to address the issue of subway network operation extension. The analysis reveals that the rule of maximum total fitness ensures the priority of evolutionary equilibrium strategies, and proper adjustment minutes can enhance the effectiveness of operation extension.

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES (2024)

Article Transportation Science & Technology

Integrated optimization of container allocation and yard cranes dispatched under delayed transshipment

Hongtao Hu, Jiao Mob, Lu Zhen

Summary: This study investigates the challenges of daily storage yard management in marine container terminals considering delayed transshipment of containers. A mixed-integer linear programming model is proposed to minimize various costs associated with transportation and yard management. The improved Benders decomposition algorithm is applied to solve the problem effectively and efficiently.

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES (2024)

Article Transportation Science & Technology

Range-constrained traffic assignment for electric vehicles under heterogeneous range anxiety

Zhandong Xu, Yiyang Peng, Guoyuan Li, Anthony Chen, Xiaobo Liu

Summary: This paper studied the impact of range anxiety among electric vehicle drivers on traffic assignment. Two types of range-constrained traffic assignment problems were defined based on discrete or continuous distributed range anxiety. Models and algorithms were proposed to solve the two types of problems. Experimental results showed the superiority of the proposed algorithm and revealed that drivers with heightened range anxiety may cause severe congestion.

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES (2024)

Article Transportation Science & Technology

Demand forecasting and predictability identification of ride-sourcing via bidirectional spatial-temporal transformer neural processes

Chuanjia Li, Maosi Geng, Yong Chen, Zeen Cai, Zheng Zhu, Xiqun (Michael) Chen

Summary: Understanding spatial-temporal stochasticity in shared mobility is crucial, and this study introduces the Bi-STTNP prediction model that provides probabilistic predictions and uncertainty estimations for ride-sourcing demand, outperforming conventional deep learning methods. The model captures the multivariate spatial-temporal Gaussian distribution of demand and offers comprehensive uncertainty representations.

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES (2024)

Article Transportation Science & Technology

Partial trajectory method to align and validate successive video cameras for vehicle tracking

Benjamin Coifman, Lizhe Li

Summary: This paper develops a partial trajectory method for aligning views from successive fixed cameras in order to ensure high fidelity with the actual vehicle movements. The method operates on the output of vehicle tracking to provide direct feedback and improve alignment quality. Experimental results show that this method can enhance accuracy and increase the number of vehicles in the dataset.

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES (2024)

Article Transportation Science & Technology

Dynamic routing for the Electric Vehicle Shortest Path Problem with charging station occupancy information

Mohsen Dastpak, Fausto Errico, Ola Jabali, Federico Malucelli

Summary: This article discusses the problem of an Electric Vehicle (EV) finding the shortest route from an origin to a destination and proposes a problem model that considers the occupancy indicator information of charging stations. A Markov Decision Process formulation is presented to optimize the EV routing and charging policy. A reoptimization algorithm is developed to establish the sequence of charging station visits and charging amounts based on system updates. Results from a comprehensive computational study show that the proposed method significantly reduces waiting times and total trip duration.

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES (2024)