4.5 Article

The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice

Journal

BRAIN RESEARCH
Volume 1636, Issue -, Pages 74-80

Publisher

ELSEVIER
DOI: 10.1016/j.brainres.2016.01.049

Keywords

Alcohol; Sucrose; Mouse; Hypothalamus; Drinking; Addiction

Categories

Funding

  1. PHS [P50-AA010761, U01-AA014095, U01-AA020929, R21-DA032005, R37/R01-DA006214, UL1-RR029882]
  2. VA Medical Research

Ask authors/readers for more resources

The orexin/hypocretin (ORX) system plays a major role in motivation for natural and drug rewards. In particular, a number of studies have shown that ORX signaling through the orexin 1 receptor (OX1R) regulates alcohol seeking and consumption. Despite the association between ORX signaling and motivation for alcohol, no study to date has investigated what role the ORX system plays in alcohol dependence, an understanding of which would have significant clinical relevance. This study was designed to evaluate the effect of the highly selective OX1R antagonist GSK1059865 on voluntary ethanol intake in ethanol dependent and control non-dependent mice. Mice were subjected to a protocol in which they were evaluated for baseline ethanol intake and then exposed to intermittent ethanol or air exposure in inhalation chambers. Each cycle of chronic intermittent ethanol (CIE), or air, exposure was followed by a test of ethanol intake. Once the expected effect of increased voluntary ethanol intake was obtained in ethanol dependent mice, mice were tested for the effect of GSK1059865 on ethanol and sucrose intake. Treatment with GSK1059865 significantly decreased ethanol drinking in a dose-dependent manner in CIE-exposed mice. In contrast GSK1059865 decreased drinking in air-exposed mice only at the highest dose used. There was no effect of GSK1059865 on sucrose intake. Thus, ORX signaling through the OX1R, using a highly-selective antagonist, has a profound influence on high levels of alcohol drinking induced in a dependence paradigm, but limited or no influence on moderate alcohol drinking or sucrose drinking. These results indicate that the ORX system may be an important target system for treating disorders of compulsive reward seeking such as alcoholism and other addictions in which motivation is strongly elevated. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Neurosciences

Differential roles of medial prefrontal subregions in the regulation of drug seeking

David E. Moorman, Morgan H. James, Ellen M. McGlinchey, Gary Aston-Jones

BRAIN RESEARCH (2015)

Article Behavioral Sciences

Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models

Caitlin A. Orsini, David E. Moorman, Jared W. Young, Barry Setlow, Stan B. Floresco

NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS (2015)

Article Multidisciplinary Sciences

Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction

David E. Moorman, Gary Aston-Jones

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2015)

Article Neurosciences

Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner

David E. Moorman, Morgan H. James, Elisabeth A. Kilroy, Gary Aston-Jones

EUROPEAN JOURNAL OF NEUROSCIENCE (2016)

Article Statistics & Probability

A Dynamic Bayesian Model for Characterizing Cross-Neuronal Interactions During Decision-Making

Bo Zhou, David E. Moorman, Sam Behseta, Hernando Ombao, Babak Shahbaba

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION (2016)

Article Computer Science, Artificial Intelligence

A Semiparametric Bayesian Model for Detecting Synchrony Among Multiple Neurons

Babak Shahbaba, Bo Zhou, Shiwei Lan, Hernando Ombao, David Moorman, Sam Behseta

NEURAL COMPUTATION (2014)

Article Multidisciplinary Sciences

Phasic locus coeruleus activity regulates cortical encoding of salience information

Elena M. Vazey, David E. Moorman, Gary Aston-Jones

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2018)

Article Substance Abuse

Chemogenetic Inactivation of Orbitofrontal Cortex Decreases Cue-induced Reinstatement of Ethanol and Sucrose Seeking in Male and Female Wistar Rats

John S. Hernandez, Annalise N. Binette, Taryn Rahman, Jeffrey D. Tarantino, David E. Moorman

ALCOHOL-CLINICAL AND EXPERIMENTAL RESEARCH (2020)

Article Neurosciences

Prelimbic and infralimbic medial prefrontal cortex neuron activity signals cocaine seeking variables across multiple timescales

David E. Moorman, Gary Aston-Jones

Summary: The prefrontal cortex plays a critical role in the execution and inhibition of reward seeking. This study investigates the neural activity in different subregions of the medial prefrontal cortex (PL and IL) during various stages of cocaine seeking. The results reveal complex functions and contributions of both PL and IL regions to drug seeking and addiction.

PSYCHOPHARMACOLOGY (2023)

Article Neurosciences

Differential Effects of Dorsal and Ventral Medial Prefrontal Cortex Inactivation during Natural Reward Seeking, Extinction, and Cue-Induced Reinstatement

Jessica P. Caballero, Garrett B. Scarpa, Luke Remage-Healey, David E. Moorman

ENEURO (2019)

Article Neurosciences

Optogenetic Dissection of Temporal Dynamics of Amygdala-Striatal Interplay during Risk/Reward Decision Making

Debra A. Bercovici, Oren Princz-Lebel, Maric T. Tse, David E. Moorman, Stan B. Floresco

ENEURO (2018)

Article Substance Abuse

Stress Facilitates the Development of Cognitive Dysfunction After Chronic Ethanol Exposure

Ellen M. Rodberg, Carolina R. den Hartog, Rachel I. Anderson, Howard C. Becker, David E. Moorman, Elena M. Vazey

ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH (2017)

Article Neurosciences

Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats

David E. Moorman, Morgan H. James, Elisabeth A. Kilroy, Gary Aston-Jones

BRAIN RESEARCH (2017)

Article Neurosciences

A rat model established by simulating genetic-environmental interactions recapitulates human Alzheimer's disease pathology

Xiaomei Lin, Tianyuyi Feng, Erheng Cui, Yunfei Li, Zhang Qin, Xiaohu Zhao

Summary: This study successfully established a rat model based on the genetic-environmental interaction, which exhibited phenotype characteristics similar to human AD in terms of cognitive function, brain microstructure, and immunohistochemistry. The genetic factor (APP mutation) and the environmental factor (acrolein exposure) accounted for 39.74% and 33.3% of the AD-like phenotypes in the model, respectively.

BRAIN RESEARCH (2024)

Article Neurosciences

Side effects of different head and neck radiotherapy doses on wistar rat's behavior

Gustavo Guimara Guerrero, Giovanna Bignoto Minhoto, Camilla dos Santos Tiburcio-Machado, Itza Amarisis Ribeiro Pinto, Claudio Antonio Federico, Marcia Carneiro Valera

Summary: The present study evaluated the influence of head and neck radiotherapy on the behavior and body weight gain in Wistar rats. The results demonstrated that different doses of radiation induced depressive behavior in the animals, and that the weight gain tended to be lower in the irradiated groups.

BRAIN RESEARCH (2024)

Article Neurosciences

Merazin hydrate produces rapid antidepressant effects by activating CaMKII to promote neuronal activities and proliferation in hippocampus

Ziwei Gao, Chao Lu, Yaping Zhu, Yuxin Liu, Yuesong Lin, Wenming Gao, Liyuan Tian, Lei Wu

Summary: This study reveals the underlying mechanisms of the rapid antidepressant effects of merazin hydrate (MH), which activates CaMKII to promote neuronal activities and proliferation in the hippocampus.

BRAIN RESEARCH (2024)

Article Neurosciences

Gulf War toxicant-induced reductions in dendritic arbors and spine densities of dentate granule cells are improved by treatment with a Nrf2 activator

Kathleen E. Murray, Whitney A. Ratliff, Vedad Delic, Bruce A. Citron

Summary: Gulf War Illness (GWI) is a chronic disorder that affects approximately 30% of Veterans deployed to the Persian Gulf. This study found that exposure to toxicants during the Gulf War resulted in long-term changes in the morphology of dentate granule cells and that treatment with Nrf2 activator could improve neuronal health in the hippocampus.

BRAIN RESEARCH (2024)

Article Neurosciences

Exploring functional connectivity alterations in sudden sensorineural hearing loss: A multilevel analysis

Jing Li, Yan Zou, Xiangchuang Kong, Yangming Leng, Fan Yang, Guofeng Zhou, Bo Liu, Wenliang Fan

Summary: This study examines the functional connectivity changes in individuals with sudden sensorineural hearing loss (SSNHL) at the integrity, network, and edge levels. The findings reveal reduced intranetwork connectivity strength and increased internetwork connectivity in SSNHL patients. These alterations are associated with the duration of SSNHL and Tinnitus Handicap Inventory scores. The study provides crucial insights into the neural mechanisms of SSNHL and the brain's network-level responses to sensory loss.

BRAIN RESEARCH (2024)

Review Neurosciences

Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain

Didier Majou, Anne-Lise Dermenghem

Summary: In the early stages of SAD, memory impairment is strongly correlated with cortical levels of soluble amyloid-beta peptide oligomers. A beta disrupts glutamatergic synaptic function and leads to cognitive deficits. This article describes the pathogenic mechanisms underlying cerebral amyloidosis, involving amyloid precursor protein synthesis, A beta residue clearance processes, and the role of specific molecules.

BRAIN RESEARCH (2024)

Article Neurosciences

Structural and functional changes in the brain after chronic complete thoracic spinal cord injury

Jing Li, Yi Shan, Xiaojing Zhao, Guixiang Shan, Peng-Hu Wei, Lin Liu, Changming Wang, Hang Wu, Weiqun Song, Yi Tang, Guo-Guang Zhao, Jie Lu

Summary: This study investigates changes in brain anatomical structures and functional network connectivity after chronic complete thoracic spinal cord injury (cctSCI) and their impact on clinical outcomes. The findings reveal alterations in gray matter volume and functional connectivity in specific brain regions, indicating potential therapeutic targets and methods for tracking treatment outcomes.

BRAIN RESEARCH (2024)

Article Neurosciences

Sumoylation in astrocytes induces changes in the proteome of the derived small extracellular vesicles which change protein synthesis and dendrite morphology in target neurons

Anllely Fernandez, Katherine Corvalan, Octavia Santis, Maxs Mendez-Ruette, Ariel Caviedes, Matias Pizarro, Maria -Teresa Gomez, Luis Federico Batiz, Peter Landgraf, Thilo Kahne, Alejandro Rojas-Fernandez, Ursula Wyneken

Summary: This study reveals the importance of SUMOylation in modulating the protein cargo of astrocyte-derived small extracellular vesicles (sEVs) and its potential impact on neurons.

BRAIN RESEARCH (2024)

Article Neurosciences

Short-term stimulations of the entopeduncular nucleus induce cerebellar changes of c-Fos expression in an animal model of paroxysmal dystonia

Anika Luettig, Stefanie Perl, Maria Zetsche, Franziska Richter, Denise Franz, Marco Heerdegen, Ruediger Koehling, Angelika Richter

Summary: This study found that changes in c-Fos activity during short-term stimulation of the entopeduncular nucleus (EPN) are associated with improvement in dystonia, and also discovered that the cerebellum may be involved in the antidystonic effects.

BRAIN RESEARCH (2024)

Article Neurosciences

Sex differences in a corticosterone-induced depression model in mice: Behavioral, neurochemical, and molecular insights

Yanlin Tao, Wei Shen, Houyuan Zhou, Zikang Li, Ting Pi, Hui Wu, Hailian Shi, Fei Huang, Xiaojun Wu

Summary: Depression has a higher incidence in women compared to men, and this study investigated the impact of sex on depressive behaviors and underlying mechanisms using a corticosterone-induced depression model in mice. The results showed sex-specific anxiety and depression behaviors in the model group, as well as differences in protein expression and neurotransmitter levels between male and female mice. These findings enhance our understanding of sex-specific differences in depression and support tailored interventions.

BRAIN RESEARCH (2024)

Review Neurosciences

Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis

Dnyandev G. Gadhave, Vrashabh V. Sugandhi, Chandrakant R. Kokare

Summary: This article discusses the characteristics and importance of the tight junctions of endothelial cells in the CNS, which act as a biological barrier known as the blood-brain barrier (BBB). It focuses on overcoming the challenges of delivering therapeutic agents to the brain in neurodegenerative disorders, particularly multiple sclerosis, through the use of biomaterials. The article also highlights the current limitations of animal models for studying multiple sclerosis and suggests a potential future research direction.

BRAIN RESEARCH (2024)

Article Neurosciences

Effects of propofol on presynaptic synapsin phosphorylation in the mouse brain in vivo

Li-Min Mao, Khyathi Thallapureddy, John Q. Wang

Summary: Propofol can enhance synapsin phosphorylation and modulate synaptic transmission in the mouse brain. The study reveals the potential role of synapsin as a substrate of propofol and its effects on neurotransmitter release machinery.

BRAIN RESEARCH (2024)

Article Neurosciences

Analyzing neural activity under prolonged mask usage through EEG

Syed Maaz Ahmed Rizvi, Abdul Baseer Buriro, Irfan Ahmed, Abdul Aziz Memon

Summary: This study explores the effects of prolonged mask usage on the human brain by analyzing EEG and physiological parameters. The results show that the mean EEG spectral power in alpha, beta, and gamma sub-bands of individuals wearing masks is smaller than those without masks. The performances on cognitive tasks and oxygen saturation level differ between the two groups, while blood pressure, body temperature, and heart rate are similar. The analysis also reveals that the occipital and frontal lobes exhibit the greatest variability in channel measurements.

BRAIN RESEARCH (2024)

Article Neurosciences

Transcranial Doppler Ultrasonography detection on cerebral infarction and blood vessels to evaluate hypoxic ischemic encephalopathy modeling

Rui-Fang Ma, Lu-Lu Xue, Jin-Xiang Liu, Li Chen, Liu-Lin Xiong, Ting-Hua Wang, Fei Liu

Summary: This study observed changes in brain infarction and blood vessels in rats during neonatal hypoxic ischemic encephalopathy (NHIE) modeling using Transcranial Doppler Ultrasonography (TCD). Longer duration of hypoxia was associated with more severe nerve damage. TCD can dynamically monitor cerebral infarction after NHIE modeling, which may serve as a useful auxiliary method for evaluating animal experimental models.

BRAIN RESEARCH (2024)

Article Neurosciences

Chemokine receptor CXCR4 interacts with nuclear receptor Nur77 and promote glioma invasion and progression

Yuxiang Dai, Chen Yu, Lu Zhou, Longyang Cheng, Hongbin Ni, Weibang Liang

Summary: Overexpression of CXCR4 in glioma is correlated with patient survival, and its inhibition can reduce invasion and migration of glioma cells. Inhibiting Nur77 also decreases cancer progression associated with CXCR4.

BRAIN RESEARCH (2024)