4.5 Article

Regulation of angiotensinogen expression by angiotensin II in spontaneously hypertensive rat primary astrocyte cultures

Journal

BRAIN RESEARCH
Volume 1643, Issue -, Pages 51-58

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2016.04.059

Keywords

Astrocytes; Angiotensinogen; Spontaneously hypertensive rat; Brainstem; Cerebellum

Categories

Funding

  1. Nova Southeastern University [335872]

Ask authors/readers for more resources

Background: Angiotensin (Ang) II, a bio-peptide of the renin-angiotensin system (RAS), plays a pivotal role in biological systems. It has been well established that in the brain, astrocytes are the predominant source for angiotensinogen (AGT), which is the precursor molecule for Ang II. The primary objective of this study was to determine the effect of Ang II on AGT mRNA and protein expression levels in primary cultures of astrocytes isolated from the brainstem and cerebellum regions of spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. Methods: Astrocytes were treated with 100 nM Ang II and the effect of time and the receptors involved in AGT mRNA and protein expression were measured using qPCR, and western blotting techniques, respectively. Results: Ang II significantly downregulated AGT mRNA levels and upregulated AGT protein levels in both SHR and Wistar rat astrocytes. Basal AGT mRNA levels in SHR samples were significantly lower as compared to Wistar astrocytes isolated from brainstem and cerebellum. There was no difference in the basal AGT protein levels when SHR and Wistar samples were compared. There was a tendency for higher Ang II-induced AGT protein levels in SHR samples compared to normotensive controls, but the difference was not significant. Ang II tended to decrease AGT mRNA levels of Wistar samples to a greater degree than SHR samples. The Ang AT, receptor mediated the actions of Ang II on AGT protein and mRNA levels. Conclusion: These findings highlight the complexity of AGT regulation and show that AGT protein and mRNA levels are responsive to Ang II in both SHR and Wistar astrocytes. Most importantly, our findings suggest that this peptide can induce its own synthesis by positively regulating AGT protein synthesis, an effect that was more robust in SHR astrocytes. Thus, dysregulation of this system may be important in preserving the hypertensive phenotype in this model. (c) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Biochemistry & Molecular Biology

Angiotensin II regulation of angiotensin-converting enzymes in spontaneously hypertensive rat primary astrocyte cultures

Yugandhar V. Gowrisankar, Michelle A. Clark

JOURNAL OF NEUROCHEMISTRY (2016)

Article Cell Biology

Angiotensin II induces interleukin-6 expression in astrocytes: Role of reactive oxygen species and NF-κB

Yugandhar V. Gowrisankar, Michelle A. Clark

MOLECULAR AND CELLULAR ENDOCRINOLOGY (2016)

Article Biochemistry & Molecular Biology

Angiotensin III: A physiological relevant peptide of the renin angiotensin system

Vudhya G. Yugandhar, Michelle A. Clark

PEPTIDES (2013)

Article Biochemistry & Molecular Biology

Kalantuboside B induced apoptosis and cytoprotective autophagy in human melanoma A2058 cells: An in vitro and in vivo study

You-Cheng Hseu, Hsin-Ju Cho, Yugandhar Vudhya Gowrisankar, Varadharajan Thiyagarajan, Xuan-Zao Chen, Kai-Yuan Lin, Hui-Chi Huang, Hsin-Ling Yang

FREE RADICAL BIOLOGY AND MEDICINE (2019)

Article Cell Biology

Zerumbone Exhibits Antiphotoaging and Dermatoprotective Properties in Ultraviolet A-Irradiated Human Skin Fibroblast Cells via the Activation of Nrf2/ARE Defensive Pathway

You-Cheng Hseu, Chih-Ting Chang, Yugandhar Vudhya Gowrisankar, Xuan-Zao Chen, Hui-Chang Lin, Hung-Rong Yen, Hsin-Ling Yang

OXIDATIVE MEDICINE AND CELLULAR LONGEVITY (2019)

Article Cell Biology

The Antiaging Activity of Ergothioneine in UVA-Irradiated Human Dermal Fibroblasts via the Inhibition of the AP-1 Pathway and the Activation of Nrf2-Mediated Antioxidant Genes

You-Cheng Hseu, Yugandhar Vudhya Gowrisankar, Xuan-Zao Chen, Yi-Chen Yang, Hsin-Ling Yang

OXIDATIVE MEDICINE AND CELLULAR LONGEVITY (2020)

Article Biochemistry & Molecular Biology

The Skin-Whitening Effects of Ectoine via the Suppression of α-MSH-Stimulated Melanogenesis and the Activation of Antioxidant Nrf2 Pathways in UVA-Irradiated Keratinocytes

You-Cheng Hseu, Xuan-Zao Chen, Yugandhar Vudhya Gowrisankar, Hung-Rong Yen, Jing-Yuan Chuang, Hsin-Ling Yang

ANTIOXIDANTS (2020)

Article Cell Biology

Suppression of LPS-Induced Inflammation by Chalcone Flavokawain A through Activation of Nrf2/ARE-Mediated Antioxidant Genes and Inhibition of ROS/NFκB Signaling Pathways in Primary Splenocytes

Hsin-Ling Yang, Ting-Yu Yang, Yugandhar Vudhya Gowrisankar, Chun-Huei Liao, Jiunn-Wang Liao, Pei-Jane Huang, You-Cheng Hseu

OXIDATIVE MEDICINE AND CELLULAR LONGEVITY (2020)

Article Pharmacology & Pharmacy

The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated ?-MSH pathways via Nrf2 activation in keratinocytes

Hsin-Ling Yang, Chia-Pei Lin, Yugandhar Vudhya Gowrisankar, Pei-Jane Huang, Wan-Lin Chang, Sirjana Shrestha, You-Cheng Hseu

Summary: Ellagic acid inhibits melanogenesis by inducing autophagy, suppressing tyrosinase activity, and affecting Nrf2 and ?-MSH pathways.

BIOCHEMICAL PHARMACOLOGY (2021)

Article Biochemistry & Molecular Biology

Staphylococcus aureus grown in anaerobic conditions exhibits elevated glutamine biosynthesis and biofilm units

Yugandhar Vudhya Gowrisankar, Sunitha Manne Mudhu, Santhosh Kumar Pasupuleti, Subbarayudu Suthi, Abhijit Chaudhury, Potukuchi Venkata Gurunadha Krishna Sarma

Summary: The spread of Staphylococcus aureus infections through biofilms is a major concern in hospital-acquired infections, with biofilm formation facilitated by glutamine biosynthesis playing a crucial role. Research has shown that multidrug-resistant strains of S. aureus exhibit higher biofilm units and glutamine synthetase activity.

CANADIAN JOURNAL OF MICROBIOLOGY (2021)

Article Oncology

The Leaf Extracts of Toona sinensis and Fermented Culture Broths of Antrodia camphorata Synergistically Cause Apoptotic Cell Death in Promyelocytic Leukemia Cells

Hsin-Ling Yang, Ya-Ting Kuo, Yugandhar Vudhya Gowrisankar, Kai-Yuan Lin, Li-Sung Hsu, Pei-Jane Huang, Hui-Chang Lin, You-Cheng Hseu

INTEGRATIVE CANCER THERAPIES (2020)

Article Biotechnology & Applied Microbiology

UV light Induces Transposition of blaZ gene Resulting in High Expression of β-lactamase in a Clinical Isolate of Staphylococcus aureus Sensitive to Ampicillin

O. Hari Prasad, V. Nagarjuna, Ch Lakshmi Prasanna, D. Vasu, V. G. Yugandhar, U. Venkatesh Prasad, P. V. L. N. Srinivas Rao, Abhijit Chaudhary, O. V. S. Reddy, P. V. G. K. Sarma

JOURNAL OF PURE AND APPLIED MICROBIOLOGY (2010)

Article Neurosciences

A rat model established by simulating genetic-environmental interactions recapitulates human Alzheimer's disease pathology

Xiaomei Lin, Tianyuyi Feng, Erheng Cui, Yunfei Li, Zhang Qin, Xiaohu Zhao

Summary: This study successfully established a rat model based on the genetic-environmental interaction, which exhibited phenotype characteristics similar to human AD in terms of cognitive function, brain microstructure, and immunohistochemistry. The genetic factor (APP mutation) and the environmental factor (acrolein exposure) accounted for 39.74% and 33.3% of the AD-like phenotypes in the model, respectively.

BRAIN RESEARCH (2024)

Article Neurosciences

Side effects of different head and neck radiotherapy doses on wistar rat's behavior

Gustavo Guimara Guerrero, Giovanna Bignoto Minhoto, Camilla dos Santos Tiburcio-Machado, Itza Amarisis Ribeiro Pinto, Claudio Antonio Federico, Marcia Carneiro Valera

Summary: The present study evaluated the influence of head and neck radiotherapy on the behavior and body weight gain in Wistar rats. The results demonstrated that different doses of radiation induced depressive behavior in the animals, and that the weight gain tended to be lower in the irradiated groups.

BRAIN RESEARCH (2024)

Article Neurosciences

Merazin hydrate produces rapid antidepressant effects by activating CaMKII to promote neuronal activities and proliferation in hippocampus

Ziwei Gao, Chao Lu, Yaping Zhu, Yuxin Liu, Yuesong Lin, Wenming Gao, Liyuan Tian, Lei Wu

Summary: This study reveals the underlying mechanisms of the rapid antidepressant effects of merazin hydrate (MH), which activates CaMKII to promote neuronal activities and proliferation in the hippocampus.

BRAIN RESEARCH (2024)

Article Neurosciences

Gulf War toxicant-induced reductions in dendritic arbors and spine densities of dentate granule cells are improved by treatment with a Nrf2 activator

Kathleen E. Murray, Whitney A. Ratliff, Vedad Delic, Bruce A. Citron

Summary: Gulf War Illness (GWI) is a chronic disorder that affects approximately 30% of Veterans deployed to the Persian Gulf. This study found that exposure to toxicants during the Gulf War resulted in long-term changes in the morphology of dentate granule cells and that treatment with Nrf2 activator could improve neuronal health in the hippocampus.

BRAIN RESEARCH (2024)

Article Neurosciences

Exploring functional connectivity alterations in sudden sensorineural hearing loss: A multilevel analysis

Jing Li, Yan Zou, Xiangchuang Kong, Yangming Leng, Fan Yang, Guofeng Zhou, Bo Liu, Wenliang Fan

Summary: This study examines the functional connectivity changes in individuals with sudden sensorineural hearing loss (SSNHL) at the integrity, network, and edge levels. The findings reveal reduced intranetwork connectivity strength and increased internetwork connectivity in SSNHL patients. These alterations are associated with the duration of SSNHL and Tinnitus Handicap Inventory scores. The study provides crucial insights into the neural mechanisms of SSNHL and the brain's network-level responses to sensory loss.

BRAIN RESEARCH (2024)

Review Neurosciences

Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain

Didier Majou, Anne-Lise Dermenghem

Summary: In the early stages of SAD, memory impairment is strongly correlated with cortical levels of soluble amyloid-beta peptide oligomers. A beta disrupts glutamatergic synaptic function and leads to cognitive deficits. This article describes the pathogenic mechanisms underlying cerebral amyloidosis, involving amyloid precursor protein synthesis, A beta residue clearance processes, and the role of specific molecules.

BRAIN RESEARCH (2024)

Article Neurosciences

Structural and functional changes in the brain after chronic complete thoracic spinal cord injury

Jing Li, Yi Shan, Xiaojing Zhao, Guixiang Shan, Peng-Hu Wei, Lin Liu, Changming Wang, Hang Wu, Weiqun Song, Yi Tang, Guo-Guang Zhao, Jie Lu

Summary: This study investigates changes in brain anatomical structures and functional network connectivity after chronic complete thoracic spinal cord injury (cctSCI) and their impact on clinical outcomes. The findings reveal alterations in gray matter volume and functional connectivity in specific brain regions, indicating potential therapeutic targets and methods for tracking treatment outcomes.

BRAIN RESEARCH (2024)

Article Neurosciences

Sumoylation in astrocytes induces changes in the proteome of the derived small extracellular vesicles which change protein synthesis and dendrite morphology in target neurons

Anllely Fernandez, Katherine Corvalan, Octavia Santis, Maxs Mendez-Ruette, Ariel Caviedes, Matias Pizarro, Maria -Teresa Gomez, Luis Federico Batiz, Peter Landgraf, Thilo Kahne, Alejandro Rojas-Fernandez, Ursula Wyneken

Summary: This study reveals the importance of SUMOylation in modulating the protein cargo of astrocyte-derived small extracellular vesicles (sEVs) and its potential impact on neurons.

BRAIN RESEARCH (2024)

Article Neurosciences

Short-term stimulations of the entopeduncular nucleus induce cerebellar changes of c-Fos expression in an animal model of paroxysmal dystonia

Anika Luettig, Stefanie Perl, Maria Zetsche, Franziska Richter, Denise Franz, Marco Heerdegen, Ruediger Koehling, Angelika Richter

Summary: This study found that changes in c-Fos activity during short-term stimulation of the entopeduncular nucleus (EPN) are associated with improvement in dystonia, and also discovered that the cerebellum may be involved in the antidystonic effects.

BRAIN RESEARCH (2024)

Article Neurosciences

Sex differences in a corticosterone-induced depression model in mice: Behavioral, neurochemical, and molecular insights

Yanlin Tao, Wei Shen, Houyuan Zhou, Zikang Li, Ting Pi, Hui Wu, Hailian Shi, Fei Huang, Xiaojun Wu

Summary: Depression has a higher incidence in women compared to men, and this study investigated the impact of sex on depressive behaviors and underlying mechanisms using a corticosterone-induced depression model in mice. The results showed sex-specific anxiety and depression behaviors in the model group, as well as differences in protein expression and neurotransmitter levels between male and female mice. These findings enhance our understanding of sex-specific differences in depression and support tailored interventions.

BRAIN RESEARCH (2024)

Review Neurosciences

Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis

Dnyandev G. Gadhave, Vrashabh V. Sugandhi, Chandrakant R. Kokare

Summary: This article discusses the characteristics and importance of the tight junctions of endothelial cells in the CNS, which act as a biological barrier known as the blood-brain barrier (BBB). It focuses on overcoming the challenges of delivering therapeutic agents to the brain in neurodegenerative disorders, particularly multiple sclerosis, through the use of biomaterials. The article also highlights the current limitations of animal models for studying multiple sclerosis and suggests a potential future research direction.

BRAIN RESEARCH (2024)

Article Neurosciences

Effects of propofol on presynaptic synapsin phosphorylation in the mouse brain in vivo

Li-Min Mao, Khyathi Thallapureddy, John Q. Wang

Summary: Propofol can enhance synapsin phosphorylation and modulate synaptic transmission in the mouse brain. The study reveals the potential role of synapsin as a substrate of propofol and its effects on neurotransmitter release machinery.

BRAIN RESEARCH (2024)

Article Neurosciences

Analyzing neural activity under prolonged mask usage through EEG

Syed Maaz Ahmed Rizvi, Abdul Baseer Buriro, Irfan Ahmed, Abdul Aziz Memon

Summary: This study explores the effects of prolonged mask usage on the human brain by analyzing EEG and physiological parameters. The results show that the mean EEG spectral power in alpha, beta, and gamma sub-bands of individuals wearing masks is smaller than those without masks. The performances on cognitive tasks and oxygen saturation level differ between the two groups, while blood pressure, body temperature, and heart rate are similar. The analysis also reveals that the occipital and frontal lobes exhibit the greatest variability in channel measurements.

BRAIN RESEARCH (2024)

Article Neurosciences

Transcranial Doppler Ultrasonography detection on cerebral infarction and blood vessels to evaluate hypoxic ischemic encephalopathy modeling

Rui-Fang Ma, Lu-Lu Xue, Jin-Xiang Liu, Li Chen, Liu-Lin Xiong, Ting-Hua Wang, Fei Liu

Summary: This study observed changes in brain infarction and blood vessels in rats during neonatal hypoxic ischemic encephalopathy (NHIE) modeling using Transcranial Doppler Ultrasonography (TCD). Longer duration of hypoxia was associated with more severe nerve damage. TCD can dynamically monitor cerebral infarction after NHIE modeling, which may serve as a useful auxiliary method for evaluating animal experimental models.

BRAIN RESEARCH (2024)

Article Neurosciences

Chemokine receptor CXCR4 interacts with nuclear receptor Nur77 and promote glioma invasion and progression

Yuxiang Dai, Chen Yu, Lu Zhou, Longyang Cheng, Hongbin Ni, Weibang Liang

Summary: Overexpression of CXCR4 in glioma is correlated with patient survival, and its inhibition can reduce invasion and migration of glioma cells. Inhibiting Nur77 also decreases cancer progression associated with CXCR4.

BRAIN RESEARCH (2024)