4.6 Review

SQSTM1/p62: A Potential Target for Neurodegenerative Disease

Journal

ACS CHEMICAL NEUROSCIENCE
Volume 10, Issue 5, Pages 2094-2114

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acschemneuro.8b00516

Keywords

SQSTM1/p62; neurodegenerative diseases; autophagy

Funding

  1. DOD [W81XWH-16-1-0490]
  2. NIH NIDA [P30 DA035778A1]

Ask authors/readers for more resources

Neurodegenerative diseases, characterized by a progressive loss of brain function, affect the lives of millions of individuals worldwide. The complexity of the brain poses a challenge for scientists trying to map the biochemical and physiological pathways to identify areas of pathological errors. Brain samples of patients with neurodegenerative diseases have been shown to contain large amounts of misfolded and abnormally aggregated proteins, resulting in dysfunction in certain brain centers. Removal of these abnormal molecules is essential in maintaining protein homeostasis and overall neuronal health. Macroautophagy is a major route by which cells achieve this. Administration of certain autophagy-enhancing compounds has been shown to provide therapeutic effects for individuals with neurodegenerative conditions. SQSTM1/p62 is a scaffold protein closely involved in the macroautophagy process. p62 functions to anchor the ubiquitinated proteins to the autophagosome membrane, promoting degradation of unwanted molecules. Modulators targeting p62 to induce autophagy and promote its protective pathways for aggregate protein clearance have high potential in the treatment of these conditions. Additionally, causal relationships have been found between errors in regulation of SQSTM1/p62 and the development of a variety of neurodegenerative disorders, including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration. Furthermore, SQSTM1/p62 also serves as a signaling hub for multiple pathways associated with neurodegeneration, providing a potential therapeutic target in the treatment of neurodegenerative diseases. However, rational design of a p62-oriented autophagy modulator that can balance the negative and positive functions of multiple domains in p62 requires further efforts in the exploration of the protein structure and pathological basis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available