4.5 Article

Profile of time-dependent VEGF upregulation in human pulmonary endothelial cells, HPMEC-ST1.6R infected with DENV-1,-2,-3, and-4 viruses

Journal

VIROLOGY JOURNAL
Volume 6, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1743-422X-6-49

Keywords

-

Categories

Funding

  1. Southeastern Center for Emerging Biologic Threats (SECEBT)

Ask authors/readers for more resources

In this study, the upregulated expression level of vascular endothelial growth factor (VEGF) in a pulmonary endothelial cell line (HPMEC-ST1.6R) infected with dengue virus serotypes 1, 2, 3, and 4 (DENV-1, -2, -3 and -4), was investigated. This cell line exhibits the major constitutive and inducible endothelial cell characteristics, as well as angiogenic response. Infection by all four DENV serotypes was confirmed by an observed cytopathic effect (CPE), as well as RT-PCR (reverse-transcription polymerase chain reaction) assays. As we had previously reported, the DENV-infected HPMEC-ST1.6R cells exhibited an elongated cytoplasmic morphology, possibly representing a response to VEGF and activation of angiogenesis. In this study, increase in VEGF expression level at designated time points of 0, 8, 24, 96 and 192 hours post-infection was investigated, using a microbead-based Bio-Plex immunoassay. Increased level of VEGF expression in infected-HPMEC-ST1.6R was detected at 8 hours post-infection. Interestingly, VEGF expression level began to decrease up to 96 hours post-infection, after which an upsurge of increased VEGF expression was detected at 192 hours post-infection. This profile of VEGF upregulated expression pattern associated with DENV infection appeared to be consistent among all four DENV-serotypes, and was not observed in mock-infected cells. In this study, the expression level of VEGF, a well-established vascular permeabilizing agent was shown to be elevated in a time-dependent manner, and exhibited a unique dual-response profile, in a DENV-infected endothelial cell. The experimental observation described here provided additional insights into potential mechanism for VEGF-mediated vascular leakage associated with DENV, and support the idea that there are potential applications of anti-VEGF therapeutic interventions for prevention of severe DENV infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available