4.7 Article

2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads

Journal

MATERIALS & DESIGN
Volume 51, Issue -, Pages 438-447

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2013.04.051

Keywords

Metal matrix composite; Mechanical properties; Microstructure; Finite element analysis; Interphase cracking

Funding

  1. Danish National Advanced Technology Foundation via the Project Blade King''
  2. Danish Strategic Research Council via the Danish Centre for Composite Structures and Materials for Wind Turbines (DCCSM) [09-067212]

Ask authors/readers for more resources

The influence of interface strength and loading conditions on the mechanical behavior of the metal-matrix composites is investigated in this paper. A program is developed to generate automatically 2D micromechanical Finite element (FE) models including interface, in which both the locations and dimensions of Silicon-Carbide (SiC) particles are randomly distributed. Finite element simulations of the deformation and damage evolution of SiC particle reinforced Aluminum (Al) alloy composite are carried out for different microstructures and interphase strengths under tensile, shear and combined tensile/shear loads. 2D cohesive element is applied to describe the fracture and failure process of interphase, while the damage models based on maximum principal stress criterion and the stress triaxial indicator are developed within Abaqus/Standard Subroutine USDFLD to simulate the failure process of SiC particles and aluminum alloy matrix, respectively. A series of computational experiments are performed to study the influence of particle arrangements, interface strengths and loading conditions of the representative volume element (RVE) on composite stiffness and strength properties. (c) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available