4.7 Article

2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads

期刊

MATERIALS & DESIGN
卷 51, 期 -, 页码 438-447

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2013.04.051

关键词

Metal matrix composite; Mechanical properties; Microstructure; Finite element analysis; Interphase cracking

资金

  1. Danish National Advanced Technology Foundation via the Project Blade King''
  2. Danish Strategic Research Council via the Danish Centre for Composite Structures and Materials for Wind Turbines (DCCSM) [09-067212]

向作者/读者索取更多资源

The influence of interface strength and loading conditions on the mechanical behavior of the metal-matrix composites is investigated in this paper. A program is developed to generate automatically 2D micromechanical Finite element (FE) models including interface, in which both the locations and dimensions of Silicon-Carbide (SiC) particles are randomly distributed. Finite element simulations of the deformation and damage evolution of SiC particle reinforced Aluminum (Al) alloy composite are carried out for different microstructures and interphase strengths under tensile, shear and combined tensile/shear loads. 2D cohesive element is applied to describe the fracture and failure process of interphase, while the damage models based on maximum principal stress criterion and the stress triaxial indicator are developed within Abaqus/Standard Subroutine USDFLD to simulate the failure process of SiC particles and aluminum alloy matrix, respectively. A series of computational experiments are performed to study the influence of particle arrangements, interface strengths and loading conditions of the representative volume element (RVE) on composite stiffness and strength properties. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据