4.7 Article

Impedance Compensation of SUBAR for Back-Drivable Force-Mode Actuation

Journal

IEEE TRANSACTIONS ON ROBOTICS
Volume 25, Issue 3, Pages 512-521

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2009.2019786

Keywords

Exoskeleton; force-mode actuation; human-robot interaction; mechanical impedance

Categories

Funding

  1. Ministry of Knowledge Economy of Korea
  2. National Science Foundation [CMMI-0800501]
  3. Korea Evaluation Institute of Industrial Technology (KEIT) [9-2, 10030832] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The Sogang University biomedical assistive robot (SUBAR), which is an advanced version of the exoskeleton for patients and the old by Songang (EXPOS) is a wearable robot developed to assist physically impaired people. It provides a person with assistive forces controlled by human intentions. If a standard geared dc motor is applied, however, the control efforts will be used mainly to overcome the resistive forces caused by the friction, the damping, and the inertia in actuators. In this paper, such undesired properties are rejected by applying a flexible transmission. With the proposed method, it is intended that an actuator exhibits zero impedance without friction while generating the desired torques precisely. Since the actuation system of SUBAR has a large model variation due to human-robot interaction, a control algorithm for the flexible transmission is designed based on a robust control method. In this paper, the mechanical design of SUBAR, including the flexible transmission and its associated control algorithm, are presented. They are also verified by experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available