4.8 Article

Asymmetric Catalysis with Ethylene. Synthesis of Functionalized Chiral Enolates

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 137, Issue 45, Pages 14268-14271

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b10364

Keywords

-

Funding

  1. US NSF [CHE-1362095]
  2. NIH [R01 GM108762]
  3. Division Of Chemistry
  4. Direct For Mathematical & Physical Scien [1362095] Funding Source: National Science Foundation

Ask authors/readers for more resources

Trialkylsilyl enol ethers are versatile intermediates often used as enolate surrogates for the synthesis of carbonyl compounds. Yet there are no reports of broadly applicable, catalytic methods for the synthesis of chiral silyl enol ethers carrying latent functionalities useful for synthetic operations beyond the many possible reactions of the silyl enol ether moiety itself. Here we report a general procedure for highly catalytic (substrate:catalyst ratio up to 1000:1) and enantioselective (92% to 98% major enantiomer) synthesis of such compounds bearing a vinyl group at a chiral carbon at the beta-position. The reactions, run under ambient conditions, use trialkylsiloxy-1,3-dienes and ethylene (1 atm) as precursors and readily available (bis-phosphine)-cobalt(II) complexes as catalysts. The silyl enolates can be readily converted into novel enantiopure vinyl triflates, a class of highly versatile cross-coupling reagents, enabling the syntheses of other enantiomerically pure, stereodefined trisubstituted alkene intermediates not easily accessible by current methods. Examples of Kumada, Stille, and Suzuki coupling reactions are illustrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available