4.4 Article

Dormant Bacillus spores protect their DNA in crystalline nucleoids against environmental stress

Journal

JOURNAL OF STRUCTURAL BIOLOGY
Volume 191, Issue 2, Pages 156-164

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2015.06.019

Keywords

Spore; Nucleoid; DNA; CEMOVIS; Crystal; Resistance

Funding

  1. German Ministry of Health
  2. Max-Planck-Society

Ask authors/readers for more resources

Bacterial spores of the genera Bacillus and Clostridium are extremely resistant against desiccation, heat and radiation and involved in the spread and pathogenicity of health relevant species such as Bacillus anthracis (anthrax) or Clostridium botulinum. While the resistance of spores is very well documented, underlying mechanisms are not fully understood. In this study we show, by cryo-electron microscopy of vitreous sections and particular resin thin section electron microscopy, that dormant Bacillus spores possess highly ordered crystalline core structures, which contain the DNA, but only if small acid soluble proteins (SASPs) are present. We found those core structures in spores of all Bacillus species investigated, including spores of anthrax. Similar core structures were detected in Geobacillus and Clostridium species which suggest that highly ordered, at least partially crystalline core regions represent a general feature of bacterial endospores. The crystalline core structures disintegrate in a period during spore germination, when resistance against most stresses is lost. Our results suggest that the DNA is tightly packed into a crystalline nucleoid by binding SASPs, which stabilizes DNA fibrils and protects them against modification. Thus, the crystalline nucleoid seems to be the structural and functional correlate for the remarkable stability of the DNA in bacterial endospores. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available