4.7 Article

Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy in the oceanic low velocity zone

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 302, Issue 1-2, Pages 81-94

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2010.11.041

Keywords

Deformation and electrical conductivity; Lithosphere-Asthenosphere Boundary; anisotropy

Funding

  1. INSU
  2. French National Agency for Research (ANR) [JC05-42707]
  3. NERC [NE/G012946/1] Funding Source: UKRI
  4. Natural Environment Research Council [NE/G012946/1, NER/I/S/2002/00649] Funding Source: researchfish

Ask authors/readers for more resources

A novel experimental setup was used to measure in-situ variations of electrical conductivity (EC) during deformation in torsion (simple shear) at 300 MPa confining pressure and temperatures between 873 and 1473 K. This setup is designed to test if deformation of partially molten systems can produce electrical anisotropy. The motivation for this study comes from the observation that the Lithosphere-Asthenosphere Boundary (LAB) at mid-ocean ridges and in particular at the East Pacific Rise is strongly electrically anisotropic. In an initial set of calibration experiments, the variation of EC with temperature (873-1473 K) was determined for Carrara marble, Aheim dunite and basalt-bearing olivine aggregates. EC was then monitored during deformation experiments at 1473 K and measured in the frequency range between 6 MHz and 1 Hz. The electrical response of the different materials tested as a function of frequency, changes significantly depending on the presence, absence, proportion and distribution of melt contained in the specimen. Melt-free samples show a single conduction mechanism whereas melt-bearing samples display two conduction mechanisms linked in series, reflecting the contribution of isolated and connected melt. Impedance was measured along the sample radius, in a direction parallel to the shear gradient inherent in torsion experiments. During the tests, increasing values of the impedance measured suggest that the long range melt connectivity decreases radially, and melt drains from low to high shear stress regions. The conductivity, calculated from impedance measurements, is low and comparable to values measured along mid-ocean ridges. We suggest that electrical anisotropy of the LAB reflects an alternation of melt-enriched and melt-depleted channels elongated in the spreading direction possibly induced by spreading velocity gradients along the ridge. This implies that the observed electrical anisotropy reveals larger scale processes than strain-induced generation of crystallographic preferred orientations. Such large-scale processes could influence the distribution of seamounts and chemical variations of mid-ocean ridge basalts. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available