4.3 Article

Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10255842.2014.961440

Keywords

spine; optimization; intervertebral joint; model; degrees of freedom

Funding

  1. Sharif University of Technology (Tehran, Iran)
  2. Institut de recherche Robert-Sauve en sante etensecurite du travail, IRSST (Montreal, Canada)

Ask authors/readers for more resources

Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model). Results indicated that ignoring intervertebral translational DOFs had in general low to moderate impact on model predictions. Compared with the OFE model, the SFE and HFE models predicted generally larger L4-L5 and L5-S1 compression and shear loads, especially for tasks with greater trunk angles; differences reached similar to 15% for the L4-L5 compression, similar to 36% for the L4-L5 shear and similar to 18% for the L5-S1 shear loads. Such differences increased, as location of the hinge joints in the HFE model moved from the mid-disc height to either the lower or upper endplates. Stability analyses of these models for some select activities revealed small changes in predicted margin of stability. Model studies dealing exclusively with the estimation of spinal loads and/or stability may, hence with small loss of accuracy, neglect intervertebral translational DOFs at smaller trunk flexion angles for the sake of computational simplicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available