4.3 Article

Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10255840701771776

Keywords

remodelling; computational modelling; anisotropy; soft tissues; orientation distribution function; multi-scale modelling

Funding

  1. Swedish Research Council [622-2006-578]

Ask authors/readers for more resources

The mechanical behaviour of soft biological tissues is governed by phenomena occurring on different scales of observation. From the computational modelling point of view, a vital aspect consists of the appropriate incorporation of micromechanical effects into macroscopic constitutive equations. In this work, particular emphasis is placed on the simulation of soft fibrous tissues with the orientation of the underlying fibres being determined by distribution functions. A straightforward but convenient Taylor-type homogenisation approach links the micro- or rather meso-level of fibres to the overall macro-level and allows to reflect macroscopically orthotropic response. As a key aspect of this work, evolution equations for the fibre orientations are accounted for so that physiological effects like turnover or rather remodelling are captured. Concerning numerical applications, the derived set of equations can be embedded into a non-linear finite element context so that first elementary simulations are finally addressed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available