4.6 Article

RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes

Journal

CELLULAR SIGNALLING
Volume 26, Issue 10, Pages 2138-2146

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2014.05.017

Keywords

Rho/ROCK; Formylpeptide receptor signaling; Respiratory burst; Granulocyte

Categories

Funding

  1. Russian Foundation for Basic Research [12-04-31803, 13-04-90855]

Ask authors/readers for more resources

Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1 mu M fMLF and 1 mu M WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Multidisciplinary Sciences

TRPC6 channel translocation into phagosomal membrane augments phagosomal function

Vladimir Riazanski, Aida G. Gabdoulkhakova, Lin S. Boynton, Raphael R. Eguchi, Ludmila V. Deriy, D. Kyle Hogarth, Nadege Loaec, Nassima Oumata, Herve Galons, Mary E. Brown, Pavel Shevchenko, Alexander J. Gallan, Sang Gune Yoo, Anjaparavanda P. Naren, Mitchel L. Villereal, Daniel W. Beacham, Vytautas P. Bindokas, Lutz Birnbaumer, Laurent Meijer, Deborah J. Nelson

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2015)

Review Immunology

Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis

Laurent Meijer, Deborah J. Nelson, Vladimir Riazanski, Aida G. Gabdoulkhakova, Genevieve Hery-Arnaud, Rozenn Le Berre, Nadege Loaec, Nassima Oumata, Herve Galons, Emmanuel Nowak, Laetitia Gueganton, Guillaume Dorothee, Michaela Prochazkova, Bradford Hall, Ashok B. Kulkarni, Robert D. Gray, Adriano G. Rossi, Veronique Witko-Sarsat, Caroline Norez, Frederic Becq, Denis Ravel, Dominique Mottier, Gilles Rault

JOURNAL OF INNATE IMMUNITY (2016)

Article Medicine, Research & Experimental

Lipid Imbalance in Individuals Predisposed to Rheumatoid Arthritis: Possible Relationship with Common Infections

M. I. Arleevskaya, A. I. Zabotin, A. G. Gabdulkhakova, O. M. Semenova, A. P. Tsibulkin

BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE (2013)

Article Immunology

Prevalence and Incidence of Upper Respiratory Tract Infection Events Are Elevated Prior to the Development of Rheumatoid Arthritis in First-Degree Relatives

Marina I. Arleevskaya, Shafigullina Albina, Regina V. Larionova, Aida G. Gabdoulkhakova, Julie Lemerle, Yves Renaudineau

FRONTIERS IN IMMUNOLOGY (2018)

Article Cell Biology

MAP kinases in regulation of NOX activity stimulated through two types of formyl peptide receptors in murine bone marrow granulocytes

Yuliya Filina, Aida Gabdoulkhakova, Albert Rizvanov, Valentina Safronova

Summary: Phagocytes' functional activity and inflammation's development and resolution are determined by formylpeptide receptors (FPRs) signaling. Research has shown that different types of formylpeptide receptors, FPR1 and FPR2, activate distinct patterns of MAP kinase activity, with JNK involved in both Fpr1 and Fpr2 mediated activation of ROS production, while p38 MAPK and ERK are only involved in Fpr1 induced ROS generation.

CELLULAR SIGNALLING (2022)

Article Biochemistry & Molecular Biology

Mechanisms of ERK phosphorylation triggered via mouse formyl peptide receptor 2

Yu. V. Filina, I. V. Tikhonova, A. G. Gabdoulkhakova, A. A. Rizvanov, V. G. Safronova

Summary: The study highlights the importance of FPR2 and its signaling pathways in understanding the activity of immune cells, particularly in the phosphorylation and activation of ERK1/2. The research also reveals the significant role of ROS in regulating ERK activity.

BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH (2022)

Meeting Abstract Biotechnology & Applied Microbiology

Dissipation of the transmembrane mitochondrial potential in malignant tumor cells by water-soluble polyol-methanofullerene

G. R. Tarasova, A. G. Gabdoulkhakova, G. V. Cherepnev, N. V. Kalacheva

HUMAN GENE THERAPY (2019)

Review Biochemistry & Molecular Biology

Formyl Peptide Receptor Polymorphisms: 27 Most Possible Ways for Phagocyte Dysfunction

S. S. Skvortsov, A. G. Gabdoulkhakova

BIOCHEMISTRY-MOSCOW (2017)

Meeting Abstract Pediatrics

FERRET ALVEOLAR MACROPHAGE FUNCTION IS DEPENDENT ON CFTR

N. W. Keiser, A. Gabdoulkhakova, V Riazanski, D. J. Nelson, J. Engelhardt

PEDIATRIC PULMONOLOGY (2014)

Meeting Abstract Oncology

Antibiotics target MCF-7 breast cancer stem cells in hypoxic environment.

Regina R. Miftakhova, Almaz Akhunzyanov, Julia V. Filina, Svetlana F. Khaiboullina, Albert A. Rizvanov

JOURNAL OF CLINICAL ONCOLOGY (2017)

Article Cell Biology

DHX38 enhances proliferation, metastasis, and EMT progression in NSCLC through the G3BP1-mediated MAPK pathway

Ke Mi, Lizhong Zeng, Yang Chen, Jingya Ning, Siyuan Zhang, Peilin Zhao, Shuanying Yang

Summary: In this study, the researchers explored the role of DHX38 in NSCLC and its underlying molecular mechanism. They found that DHX38 was overexpressed in NSCLC and patients with high DHX38 expression had poor prognosis. DHX38 promoted cell proliferation, migration, and invasion in NSCLC and activated the MAPK pathway. The researchers also identified G3BP1 as a target protein that interacted with DHX38 and showed that DHX38 regulated the expression of G3BP1. Silencing G3BP1 reversed the effects of DHX38 overexpression on tumor cell proliferation, migration, and invasion and inhibited the MAPK pathway activation.

CELLULAR SIGNALLING (2024)

Article Cell Biology

Functional delineation of the luminal epithelial microenvironment in breast using cell-based screening in combinatorial microenvironments

Tiina A. Jokela, Mark A. Dane, Rebecca L. Smith, Kaylyn L. Devlin, Sundus Shalabi, Jennifer C. Lopez, Masaru Miyano, Martha R. Stampfer, James E. Korkola, Joe W. Gray, Laura M. Heiser, Mark A. Labarge

Summary: Microenvironment signals have a significant impact on cell fate and tissue homeostasis. Understanding how different microenvironment factors regulate cellular phenotype has been challenging. In this study, a high-throughput microenvironment microarray was used to identify factors that support the proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple factors that modulate luminal cell number were identified and their effects were confirmed using RNA sequencing and cell-based functional studies. Hepatocyte growth factor (HGF) was found to be robust to individual variation and played a role in expanding luminal cells. Our approach demonstrates the power of high-dimensional cell-based approaches in dissecting microenvironmental signals.

CELLULAR SIGNALLING (2024)

Article Cell Biology

Stem cell landscape aids in tumor microenvironment identification and selection of therapeutic agents in gastric cancer

Chao He, Yongfeng Ding, Yan Yang, Gang Che, Fei Teng, Haohao Wang, Jing Zhang, Donghui Zhou, Yanyan Chen, Zhan Zhou, Haiyong Wang, Lisong Teng

Summary: This study categorized gastric cancer patients into three stemness subtypes, each demonstrating distinct prognoses, components of tumor microenvironment (TME) infiltration, and varying sensitivity or resistance to treatment. A stemness risk model was constructed to predict treatment response and prognosis.

CELLULAR SIGNALLING (2024)

Article Cell Biology

miR-29c-3p acts as a tumor promoter by regulating β-catenin signaling through suppressing DNMT3A, TET1 and HBP1 in ovarian carcinoma

Haile Zhao, Lijuan Feng, Rui Cheng, Man Wu, Xiaozhou Bai, Lifei Fan, Yaping Liu

Summary: miR-29c-3p is overexpressed in benign and malignant ovarian carcinoma and is associated with poor prognosis. Its overexpression modulates tumorigenesis in ovarian cancer cells, including epithelial-mesenchymal transition, proliferation, migration, and invasion, through the regulation of DNMT3A, TET1, and HBP1. miR-29c-3p may serve as a potential biomarker for clinical diagnosis or co-diagnosis of ovarian carcinoma.

CELLULAR SIGNALLING (2024)

Article Cell Biology

E3 ubiquitin ligase RNF180 impairs IPO4/SOX2 complex stability and inhibits SOX2-mediated malignancy in ovarian cancer

Haiyan Zhao, Fangfang Bi, Mengyuan Li, Yuhan Diao, Chen Zhang

Summary: This study confirmed the tumor suppressor effect of RNF180 on ovarian cancer, elucidated the mechanism of the molecule network related to RNF180 and IPO4 in ovarian cancer, and identified a new therapeutic target for ovarian cancer.

CELLULAR SIGNALLING (2024)

Article Cell Biology

Decreased FoxO1 expression contributes to facet joint osteoarthritis pathogenesis by impairing chondrocyte migration and extracellular matrix synthesis

Chu Chen, Guanhua Xu, Jiajia Chen, Chunshuai Wu, Jinlong Zhang, Jiawei Jiang, Hongxiang Hong, Zhiming Cui

Summary: This study investigated the role of transcription factor FoxO1 in facet joint osteoarthritis (FJOA) and found that FoxO1 deletion led to severe osteoarthritic changes. Transcriptome sequencing and bioinformatics analysis identified differentially expressed genes (DEGs) and potential key contributors to FJOA. Additionally, over-expression of certain genes and inhibition of others were shown to counteract the impairments caused by FoxO1 deletion in chondrocyte migration and extracellular matrix synthesis. These findings help unravel the molecular mechanisms underlying FJOA and open up promising therapeutic avenues for its treatment.

CELLULAR SIGNALLING (2024)

Article Cell Biology

CircFSCN1 induces tumor progression and triggers epithelial-mesenchymal transition in bladder cancer through augmentation of MDM2-mediated p53 silencing

Wen Deng, Ru Chen, Situ Xiong, Jianqiang Nie, Hailang Yang, Ming Jiang, Bing Hu, Xiaoqiang Liu, Bin Fu

Summary: This study demonstrates that circFSCN1 is upregulated in bladder cancer and associated with cancer-specific survival. CircFSCN1 promotes tumor progression and epithelial-mesenchymal transition in bladder cancer through enhancing MDM2-mediated silencing of p53 by sponging miR-145-5p.

CELLULAR SIGNALLING (2024)

Article Cell Biology

Knockdown of SQLE promotes CD8+T cell infiltration in the tumor microenvironment

Jun Wu, Weibin Hu, Wenhui Yang, Yihao Long, Kaizhao Chen, Fugui Li, Xiaodong Ma, Xun Li

Summary: Cholesterol biosynthesis and metabolism play critical roles in tumor development and microenvironmental conditions. Squalene Epoxidase (SQLE), the second rate-limiting enzyme in cholesterol synthesis, is found to be uniquely expressed in various cancers, and its expression level is closely associated with tumor mutation burden and microsatellite instability. SQLE expression is negatively correlated with immune cell infiltration. Inhibition of SQLE alters the immune response in the tumor microenvironment. Furthermore, protein metabolism and translation are identified as main binding factors with SQLE.

CELLULAR SIGNALLING (2024)

Article Cell Biology

ZNF70 regulates IL-1β secretion of macrophages to promote the proliferation of HCT116 cells via activation of NLRP3 inflammasome and STAT3 pathway in colitis-associated colorectal cancer

Zhihong Zhang, Mingyue Li, Yi Tai, Yue Xing, Hongxiang Zuo, Xuejun Jin, Juan Ma

Summary: ZNF70 plays an important role in colitis-associated colorectal cancer (CAC) by regulating macrophages IL-1 beta secretion to promote HCT116 proliferation. It may serve as a promising target for treating CAC.

CELLULAR SIGNALLING (2024)

Article Cell Biology

Immune checkpoints signature-based risk stratification for prognosis of patients with gastric cancer

Zenghong Wu, Gangping Li, Weijun Wang, Kun Zhang, Mengke Fan, Yu Jin, Rong Lin

Summary: This study comprehensively explored the role of immune checkpoints and tumor microenvironment in gastric cancer patients based on genomic data. It constructed an ICIs signature and ICI score to evaluate patient prognosis and heterogeneity.

CELLULAR SIGNALLING (2024)

Article Cell Biology

Inhibition of spinal Rac1 attenuates chronic inflammatory pain by regulating the activation of astrocytes

Yantong Wan, Jieshu Zhou, Panpan Zhang, Xuemei Lin, Hao Li

Summary: This study found that Rac1 plays a role in astrocyte activation and attenuates chronic inflammatory pain by blocking the phosphorylation of NLRP3 inflammasome and NF-kappa B.

CELLULAR SIGNALLING (2024)

Article Cell Biology

Circular RNA CircSATB2 facilitates osteosarcoma progression through regulating the miR-661/FUS-mediated mRNA of ZNFX1

Zhen Wang, Diankun She, Lei Liu, Xianming Hua, Hao Zhu, Lingfeng Yu, Han Wang, Yan Zhu, Gentao Fan, Yicun Wang, Meng Xu, Guangxin Zhou

Summary: Circular RNAs (circRNAs) are non-coding RNAs that play a role in the regulation of various cancers, including osteosarcoma (OS). This study identified circSATB2 as a highly expressed circRNA in OS tissues and cell lines, and demonstrated its involvement in promoting OS proliferation and migration. Mechanistically, circSATB2 was found to regulate the progression of OS by sponging miR-661 and FUS to regulate ZNFX1 mRNA. These findings suggest that circSATB2 could serve as a prognostic marker and therapeutic target for osteosarcoma.

CELLULAR SIGNALLING (2024)

Article Cell Biology

Extracellular vesicles of iPS cells highly capable of producing HGF and TGF-β1 can attenuate Sjogren's syndrome via innate immunity regulation

Kenichi Ogata, Masafumi Moriyama, Tatsuya Kawado, Hiroki Yoshioka, Aiko Yano, Mayu Matsumura-Kawashima, Seiji Nakamura, Shintaro Kawano

Summary: This study found that extracellular vesicles released by induced pluripotent stem cells can reduce inflammatory cell infiltration, increase saliva volume, and decrease the production of antibodies associated with Sjogren's syndrome in a mouse model. The let-7 family in these vesicles may suppress the expression of TLR4 and NF-kappa B, which leads to the inhibition of pro-inflammatory cytokine production through the MAPK pathway.

CELLULAR SIGNALLING (2024)

Article Cell Biology

Phosphodiesterase 4 activity uniquely regulates ciliary cAMP-dependent 3T3-L1 adipogenesis

Mikayla R. Erdelsky, Sarah A. Groves, Charmi Shah, Samantha B. Delios, M. Bibiana Umana, Donald H. Maurice

Summary: Recent evidence suggests that cAMP signaling within the primary cilium plays a crucial role in promoting adipogenic differentiation of 3T3-L1 preadipocytes. In this study, the researchers identified the specific cAMP phosphodiesterases expressed by these cells and found that inhibition of PDE4 promotes FFAR4-mediated adipogenesis. This work could potentially lead to the discovery of more targeted therapeutic approaches for controlling adipogenesis and differentiation of other stem cells.

CELLULAR SIGNALLING (2024)

Article Cell Biology

METTL3 regulates the proliferation, metastasis and EMT progression of bladder cancer through P3H4

Chun-Hui Liu, Jun-Jie Zhang, Qian-Jin Zhang, Yang Dong, Zhen-Duo Shi, Si-Hao Hong, Hou-Guang He, Wei Wu, Cong-Hui Han, Lin Hao

Summary: Bladder cancer, the most common malignant tumor in the urinary system, is associated with significantly up-regulated expression of P3H4, which is regulated by METTL3 and plays a crucial role in the proliferation, metastasis, and EMT progression of bladder cancer. Targeting this METTL3-P3H4 pathway may serve as a potential therapeutic strategy for bladder cancer.

CELLULAR SIGNALLING (2024)