4.7 Article

Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy

Journal

CARBOHYDRATE POLYMERS
Volume 74, Issue 3, Pages 509-513

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2008.04.005

Keywords

cellulose; cellulose acetate; hydrogen bond; two-dimensional infrared spectroscopy; moving-window

Funding

  1. National Science of Foundation of China (NSF) [20774022, 20573022, 20425415, 20490220]
  2. Leading Scientist Project of Shanghai [07XD14002]
  3. National Basic Research Program of China [2005CB623800)]
  4. MOE [20050246010]

Ask authors/readers for more resources

Temperature-dependent structural changes in hydrogen bonds in cellulose diacetate (CDA) were investigated by Fourier transform infrared spectroscopy (FT-IR). The O-H stretching vibration band was selected to explore the structure changes. Two-dimensional correlation spectroscopy (2DCOS) in combination with moving-window technique was applied to analyze the overlapping O-H band due to various kinds of hydrogen bonds. By virtue of this powerful method, the inter-chain and intra-chain hydrogen bonds in cellulose diacetate can be identified. Moreover, typical temperature with great spectral variation was visualized by the moving-window analysis. In the temperature region of 35-100 degrees C, the absorbed water in the hydrogen-bond matrix broke away, and the structure of hydrogen bonds in CDA changed accordingly. When temperature increased into a higher region, both the inter-chain hydrogen bonds (comparatively strong but relatively unstable) and the intra-chain hydrogen bonds (comparatively weak but stable) began to decrease, and the inter-chain hydrogen bonds were weakened prior to the intra-chain hydrogen bonds. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Environmental

One stone for three birds: One-step engineering highly elastic and conductive hydrogel electronics with multilayer MXene as initiator, crosslinker and conductive filler simultaneously

Jiahui Huang, Xianwu Huang, Peiyi Wu

Summary: A new multilayer MXene initiator is reported in this study, which can generate hydroxyl radical species and initiate the polymerization of a series of vinyl monomers. This initiator can crosslink with cationic monomers to form high-quality composite hydrogels, displaying high elasticity, conductivity, and self-healing performance.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Physical

Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance

Faqing Cao, Baohu Wu, Tianyu Li, Shengtong Sun, Yucong Jiao, Peiyi Wu

Summary: The study addressed the issue of Zn dendrite growth in liquid electrolytes by using a mechanoadaptive cellulose nanofibril-based morphing gel electrolyte, which improved the stability and cycle life of Zn-ion batteries at high current densities.

NANO RESEARCH (2022)

Article Multidisciplinary Sciences

Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh

Jiqiang Wang, Baohu Wu, Peng Wei, Shengtong Sun, Peiyi Wu

Summary: Inspired by the repairable nanofibrous structure of human skin, the authors have engineered a fatigue-resistant artificial ionic skin toughened by self-healable elastic nanomesh, providing opportunities for designing durable ion-conducting materials with skin-like properties.

NATURE COMMUNICATIONS (2022)

Article Chemistry, Multidisciplinary

Highly Damping and Self-Healable Ionic Elastomer from Dynamic Phase Separation of Sticky Fluorinated Polymers

Huai Xiang, Xiaoxia Li, Baohu Wu, Shengtong Sun, Peiyi Wu

Summary: A highly damping ionic elastomer with energy-dissipating nanophases embedded in an elastic matrix is introduced, which has excellent properties and can be used for sensing and protecting applications in soft electronics and robotics.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Modulating the Coordination Environment of Lithium Bonds for High Performance Polymer Electrolyte Batteries

Zhilong Tian, Lei Hou, Doudou Feng, Peiyi Wu, Yucong Jiao

Summary: In this study, a lithium bond enriched polymer gel (PAEV) was designed to achieve polymer electrolytes with adjustable ionic conductivity and tunable mechanical properties. The electrolyte showed enhanced capacity and performance in lithium-ion batteries at different temperatures.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Synergetic Lithium and Hydrogen Bonds Endow Liquid-Free Photonic Ionic Elastomer with Mechanical Robustness and Electrical/Optical Dual-Output

Lei Peng, Lei Hou, Peiyi Wu

Summary: Photonic ionic elastomers (PIEs) with multiple signal outputs are challenging to fabricate with mechanical robustness, good ionic conductivity, and brilliant structure color. This study introduces the synergistic effect of lithium and hydrogen bonds into a PIE, leading to enhanced mechanical strength and toughness. The PIEs also exhibit synchronous electrical and optical output under mechanical strains and extraordinary stability under extreme conditions. This work offers a promising molecular engineering route for high-performance photonic ionic conductors in advanced ionotronic applications.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Non-equilibrium-Growing Aesthetic Ionic Skin for Fingertip-Like Strain-Undisturbed Tactile Sensation and Texture Recognition

Haiyan Qiao, Shengtong Sun, Peiyi Wu

Summary: Humans use periodically ridged fingertips for precise perception of object characteristics through ion-based mechanotransduction. Designing artificial ionic skins with similar tactile capabilities is challenging due to the contradiction between compliance and pressure sensing. Inspired by the hierarchical structure of fingertips, an aesthetic ionic skin with periodic stiff ridges embedded in a soft hydrogel matrix is developed, enabling strain-undisturbed pressure sensing and texture recognition. This approach can inspire the design of high-performance ionic tactile sensors for soft robotics and prosthetics.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Alleviating Side Reactions on Zn Anodes for Aqueous Batteries by a Cell Membrane Derived Phosphorylcholine Zwitterionic Protective Layer

Zhen Meng, Yucong Jiao, Peiyi Wu

Summary: A polyzwitterion protective layer (PZIL) was developed to prevent dendrite formation and side reactions on zinc anode, improving the safety and stability of zinc ion batteries. The PZIL adsorbs onto the zinc metal, inhibiting side reactions, and chelates with zinc ions to regulate solvation structure. Additionally, the Hofmeister effect enhances interfacial contact during electrochemical characterization. The symmetrical zinc battery with PZIL exhibited stable performance for over 1000 hours at an ultra-high current density of 40 mA cm(-2).

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Mechanically Adaptative and Environmentally Stable Ionogels for Energy Harvest

Wei Zhao, Zhouyue Lei, Peiyi Wu

Summary: Converting building and environment heat into electricity is a promising strategy for energy harvest. However, typical thermoelectric materials face challenges in outdoor building systems due to processing difficulties, mechanical brittleness, and low environmental tolerance. This research explores a concept based on synergistic ionic associations to improve the mechanical properties and harsh environment stability of ionic-type thermoelectric gels. These gels demonstrate high stretchability, self-healing ability, temperature insensitivity, and water-proof performance, and can be applied to various surfaces. They also exhibit remarkable thermal and humidity stability, and can generate significant thermovoltage even on cloudy days.

ADVANCED SCIENCE (2023)

Article Chemistry, Multidisciplinary

Amphibious Polymer Materials with High Strength and Superb Toughness in Various Aquatic and Atmospheric Environments

Hongbo Wan, Baohu Wu, Lei Hou, Peiyi Wu

Summary: This study reports the fabrication of amphibious polymer materials with outstanding mechanical performances. By utilizing multi-scale nanostructures, a composite of polyvinyl alcohol/poly(2-methoxyethylacrylate) (PVA/PMEA) was prepared, which demonstrated excellent stability and high mechanical strength in both hydrated and dehydrated states. This research provides a promising route for constructing high-performance polymer materials for complex load-bearing environments.

ADVANCED MATERIALS (2023)

Article Materials Science, Multidisciplinary

Article Short-term plasticity, multimodal memory, and logical responses mimicked in stretchable hydrogels

Zhouyue Lei, Peiyi Wu

Summary: Stretchable hydrogels have been developed to interact with biological interfaces, but lack the intelligence of biological systems. To overcome this limitation, researchers have developed asymmetric trimeric hydrogels inspired by biological ion channels. These hydrogels can sense external stimuli, encode logical responses, emulate synaptic plasticity, and even memorize images in a multistore model. Moreover, they are transparent, stretchable, and work stably under large deformation, overcoming the limitations of conventional electronic devices. This bionic design opens up possibilities for intelligent hydrogel ionotronics and bridges the gap between human-machine interfaces.

MATTER (2023)

Article Chemistry, Multidisciplinary

Readily prepared and processed multifunctional MXene nanocomposite hydrogels for smart electronics

Jiahui Huang, Xianwu Huang, Peiyi Wu

Summary: A multifunctional MXene nanocomposite hydrogel is reported, which can be readily prepared and processed via the fast gelation of a cationic monomer initiated by delaminated MXene sheets. The resulting nanocomposites are ultrastretchable, three-dimensional printable, and show outstanding mechanical and electrical self-healing properties. The integration of these multifunctional systems onto various substrates through 3D printing demonstrates great prospects as smart flexible electronics.

SMARTMAT (2023)

Article Chemistry, Multidisciplinary

3D Printing of Ionogels with Complementary Functionalities Enabled by Self-Regulating Ink

Jiahui Huang, Zhenchuan Yu, Peiyi Wu

Summary: Shaping soft and conductive materials through 3D printing drives innovation in various applications, such as robotic counterparts that emulate biological systems. A tricomponent ionogel-based ink design is reported in this study, which addresses the challenges of printability and synergy among ink components. This ink design strategy greatly extends material choice and provides valuable guidance in constructing diverse artificial systems by 3D printing.

ADVANCED SCIENCE (2023)

Article Chemistry, Multidisciplinary

Proton-Reservoir Hydrogel Electrolyte for Long-Term Cycling Zn/PANI Batteries in Wide Temperature Range

Doudou Feng, Yucong Jiao, Peiyi Wu

Summary: In this study, a polymeric acid hydrogel electrolyte was fabricated for high performance Zn/polyaniline batteries. The electrolyte showed high cycling stability and high discharge capacity in a wide temperature range, making it a promising candidate for advanced aqueous batteries.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Review Polymer Science

Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers

Lei Hou, Pei-yi Wu

Summary: 2Dcos is an advanced analysis method that holds great advantages in the field of polymers. It can effectively identify fine structures and dynamic mechanisms within polymer systems, thus improving the analysis results.

ACTA POLYMERICA SINICA (2022)

Review Chemistry, Applied

Molecular dynamics simulation techniques and their application to aroma compounds/cyclodextrin inclusion complexes: A review

Xingran Kou, Dongdong Su, Fei Pan, Xiwei Xu, Qingran Meng, Qinfei Ke

Summary: This review provides a systematic discussion of the application of molecular dynamics (MD) simulations in aroma compounds (ACs)/cyclodextrins (CDs) inclusion complexes (ICs). It covers the establishment of the simulation process, parameter selection, model evaluation, and various application cases, summarizing the major achievements and challenges of this method.

CARBOHYDRATE POLYMERS (2024)

Review Chemistry, Applied

Opportunities and challenges of fucoidan for tumors therapy

Haoyu Yu, Quanbin Zhang, Ammad Ahmad Farooqi, Jing Wang, Yang Yue, Lihua Geng, Ning Wu

Summary: Brown algae are rich in fucoidan, which has been found to have anti-cancer and anti-metastasis effects. Fucoidan inhibits tumor cell growth, proliferation, and metastasis, and also promotes immune responses in the tumor microenvironment.

CARBOHYDRATE POLYMERS (2024)

Review Chemistry, Applied

A review of chitosan in gene therapy: Developments and challenges

Liang Dong, Yanan Li, Hailin Cong, Bing Yu, Youqing Shen

Summary: Gene therapy is a revolutionary treatment that requires suitable vectors for protecting and releasing exogenous nucleic acids in target cells. Chitosan, as a non-viral vector, has gained attention due to its good biocompatibility and ability to load large amounts of nucleic acids. This paper summarizes the potential of chitosan and its derivatives as gene delivery vector materials, discusses factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and current research development directions. It also provides an outlook on the future prospects of chitosan.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering

Ana Iglesias-Mejuto, Beatriz Magarinos, Tania Ferreira-Goncalves, Ricardo Starbird-Perez, Carmen Alvarez-Lorenzo, Catarina Pinto Reis, Ines Ardao, Carlos A. Garcia-Gonzalez

Summary: This study developed a novel processing strategy to manufacture drug-loaded and personalized aerogels with nanostructures. The aerogels demonstrated bioactivity and antimicrobial effects, promoting bone regeneration and preventing infections in bone tissue engineering.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Micro assembly strategies for enhancing solid-state emission of cellulose nanocrystals and application in photoluminescent inks

Zhenxu Shi, Dimei Yang, Yan Zhou, Xinyu Chen, Lin Gan, Jin Huang

Summary: This study proposes a micro-assembly method to improve the photoluminescent properties of crystalline cellulose nanocrystals (CNCs) by organizing them within a sub-micrometer-sized metal-organic framework and coating with TiO2. The TiO2 coating prevents CNC assembly breakdown and allows information to be revealed using screenprinted labels for anti-counterfeiting purposes.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

High-throughput intact Glycopeptide quantification strategy with targeted-MS (HTiGQs-target) reveals site-specific IgG N-glycopeptides as biomarkers for hepatic disorder diagnosis and staging

Xuejiao Liu, Bin Fu, Jierong Chen, Zhenyu Sun, Dongdong Zheng, Zhonghua Li, Bing Gu, Ying Zhang, Haojie Lu

Summary: Liver disease is a major cause of global mortality, and identifying biomarkers for diagnosing its progression is crucial for improving outcomes. Targeted mass spectrometry is a powerful tool for verifying biomarker candidates and clinical applications, particularly for glycoproteins translation. However, the limitation of analyzing only one sample per run has become apparent. In this study, a high-throughput intact N-glycopeptides quantification strategy was developed, allowing the validation of 20 samples per run with an average analysis time of 3 minutes per sample. The strategy was applied in a cohort of 461 serum samples and identified a panel of 10 IgG N-glycopeptides that have strong clinical utility in evaluating the severity of liver disease.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

β-Glucan-conjugated anti-PD-L1 antibody enhances antitumor efficacy in preclinical mouse models

Qian Wang, Hao Jiang, Hongli Zhang, Weiqiao Lu, Xiao Wang, Wenfeng Xu, Jia Li, Youjing Lv, Guoyun Li, Chao Cai, Guangli Yu

Summary: This study proposes a novel strategy of antibody-beta-glucan conjugates (AGC) to enhance the antitumor immune response to immune checkpoint blockade (ICB) therapy. AGC demonstrated powerful tumor suppression and promoted interaction between tumor cells and dendritic cells (DCs), thereby enhancing immunotherapeutic benefits.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Enhanced porous membrane fabrication using cellulose acetate and citric acid: Improved structural integrity, thermal stability, and gas permeability

Chaeyeon Lee, Sojeong Lee, Sang Wook Kang

Summary: The study aims to enhance the properties of porous membranes by addressing the limitations associated with phase separation. By using cellulose acetate and citric acid, the researchers were able to fabricate membranes with improved mechanical strength and thermal stability. The cross-linking effect of citric acid resulted in a more uniform pore structure and higher porosity.

CARBOHYDRATE POLYMERS (2024)

Review Chemistry, Applied

Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives

Tejaswini Kolipaka, Giriraj Pandey, Noella Abraham, Dadi A. Srinivasarao, Rajeev Singh Raghuvanshi, P. S. Rajinikanth, Vidya Tickoo, Saurabh Srivastava

Summary: This review focuses on the design and application of polysaccharide-based hydrogel wound dressings, highlighting aspects such as biocompatibility, biodegradability, drug entrapment, moisturizing ability, swelling, and mechanical properties. Additionally, various crosslinking methods and recent developments in stimuli-responsive hydrogels are discussed.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

A highly stretchable, adhesive, and antibacterial hydrogel with chitosan and tobramycin as dynamic cross-linkers for treating the infected diabetic wound

Anqi Xu, Nan Zhang, Shixing Su, Hongyu Shi, Daoqiang Lu, Xifeng Li, Xin Zhang, Xin Feng, Zhuohua Wen, Gengwu Ma, Mengshi Huang, Chi Huang, Yuqi Hu, Hao Yuan, Qinwen Liu, Daogang Guan, Jun Wang, Chuanzhi Duan

Summary: The study presents a one-pot radical polymerization method to fabricate a hydrogel with adhesive properties, which can effectively treat bacterial-infected diabetic wounds and accelerate wound healing.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Valorization of shrimp processing waste-derived chitosan into anti-inflammatory chitosan-oligosaccharides (CHOS)

Montarop Yamabhai, Munthipha Khamphio, Thae Thae Min, Chai Noy Soem, Nguyen Cao Cuong, Waheni Rizki Aprilia, Krisanai Luesukprasert, Karsidete Teeranitayatarn, Atthaphon Maneedaeng, Tina R. Tuveng, Silje B. Lorentzen, Simen Antonsen, Paiboon Jitprasertwong, Vincent G. H. Eijsink

Summary: The study investigates the bioconversion of chitosan into soluble anti-inflammatory chitosan oligosaccharides (CHOS) using an enzyme. The results show that the generated CHOS have anti-inflammatory activity, but the magnitude of the activity depends on the substrate and production process. Different methods of dissolving chitosan also affect the properties of CHOS. The study highlights the importance of quality assurance in CHOS preparations.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Structural elucidation of an active polysaccharide from Radix Puerariae lobatae and its protection against acute alcoholic liver disease

Wen Cao, Jiangping Wu, Xinya Zhao, Zixu Li, Jie Yu, Taili Shao, Xuefeng Hou, Lutan Zhou, Chunfei Wang, Guodong Wang, Jun Han

Summary: In this study, a water-soluble polysaccharide (PLP1) was successfully isolated and purified from Pueraria lobata. It was found that PLP1 was composed of specific glycosidic units and exhibited a better free radical-scavenging ability. Moreover, PLP1 effectively protected the liver against acute alcoholic liver disease (ALD) in mice.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Caffeic acid-grafted chitosan/sodium alginate/nanoclay-based multifunctional 3D-printed hybrid scaffolds for local drug release therapy after breast cancer surgery

Ya Su, Yaqian Liu, Xueyan Hu, Yueqi Lu, Jinyuan Zhang, Wenbo Jin, Wang Liu, Yan Shu, Yuen Yee Cheng, Wenfang Li, Yi Nie, Bo Pan, Kedong Song

Summary: A 3D printed scaffold based on carbon dots-curcumin nano-drug release has been developed for drug delivery after breast cancer surgery. The scaffold showed effective inhibition of tumor growth, antibacterial activity, and promotion of wound healing, making it a promising approach for preventing tumor recurrence.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Enzymatically-derived oligo-carrageenans interact with α-Gal antibodies and Galectin-3

Ekaterina Sokolova, Diane Jouanneau, Antonin Chevenier, Murielle Jam, Nathalie Desban, Pierre Colas, Elizabeth Ficko-Blean, Gurvan Michel

Summary: Carrageenans, a compound synthesized in red algae, have various biological properties and are valuable in the pharmaceutical and cosmetic industries. Their fine structure affects wound healing, oxidative processes, hemostasis, and inflammation. Enzymatic modification of carrageenans produces oligosaccharides that bind to natural human serum antibodies and specific antibodies, showing potential for therapeutic applications.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Immuno-modulation of tumor and tumor draining lymph nodes through enhanced immunogenic chemotherapy by nano-complexed hyaluronic acid/polyvinyl alcohol microneedle

Yan Shi, Miao Yu, Kaijin Qiu, Tiantian Kong, Chunjing Guo, Wenxue Zhang, Daquan Chen, Ming Kong

Summary: In this study, functionalized transfersomes were developed to co-deliver doxorubicin and 1MT towards primary tumors and tumor draining lymph nodes via transdermal administration using microneedles. The results showed that the nano-complexed microneedles exhibited a stronger suppression in tumor growth compared to the intravenous group.

CARBOHYDRATE POLYMERS (2024)