4.4 Article

New QM/MM implementation of the DFTB3 method in the gromacs package

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 36, Issue 26, Pages 1978-1989

Publisher

WILEY
DOI: 10.1002/jcc.24029

Keywords

quantum mechanics; molecular mechanics; density-functional tight-binding; free energy simulation; extended sampling; molecular dynamics

Funding

  1. Academy of Finland

Ask authors/readers for more resources

The approximate density-functional tight-binding theory method DFTB3 has been implemented in the quantum mechanics/molecular mechanics (QM/MM) framework of the Gromacs molecular simulation package. We show that the efficient smooth particle-mesh Ewald implementation of Gromacs extends to the calculation of QM/MM electrostatic interactions. Further, we make use of the various free-energy functionalities provided by Gromacs and the PLUMED plugin. We exploit the versatility and performance of the current framework in three typical applications of QM/MM methods to solve biophysical problems: (i) ultrafast proton transfer in malonaldehyde, (ii) conformation of the alanine dipeptide, and (iii) electron-induced repair of a DNA lesion. Also discussed is the further development of the framework, regarding mostly the options for parallelization. (c) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available