4.7 Article

Analytical gradients of the state-average complete active space self-consistent field method with density fitting

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 143, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4927228

Keywords

-

Funding

  1. Research Council of Norway through a Centre of Excellence Grant [179568/V30]
  2. Swedish Research Council
  3. eSSENCE program
  4. Italian Ministry of Education and Research (MIUR) [RBFR1248UI]

Ask authors/readers for more resources

An efficient implementation of the state-averaged complete active space self-consistent field (SA-CASSCF) gradients employing density fitting (DF) is presented. The DF allows a reduction both in scaling and prefactors of the different steps involved. The performance of the algorithm is demonstrated on a set of molecules ranging up to an iron-Heme b complex which with its 79 atoms and 811 basis functions is to our knowledge the largest SA-CASSCF gradient computed. For smaller systems where the conventional code could still be used as a reference, both the linear response calculation and the gradient formation showed a clear timing reduction and the overall cost of a geometry optimization is typically reduced by more than one order of magnitude while the accuracy loss is negligible. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Medicinal

Simulation Reveals the Chameleonic Behavior of Macrocycles

Daniel Sethio, Vasanthanathan Poongavanam, Ruisheng Xiong, Mohit Tyagi, Duc Duy Vo, Roland Lindh, Jan Kihlberg

Summary: Conformational analysis is crucial for the design of bioactive molecules, and it becomes even more challenging for macrocycles due to their unique characteristics. In this study, we simulated the conformations of five designed macrocycles and verified the results against experimental measurements. Our simulations accurately predicted the intramolecular interactions and revealed a solvent-induced conformational switch of the macrocyclic ring. This provides a foundation for the rational design of molecular chameleons that can adapt to different environments.

JOURNAL OF CHEMICAL INFORMATION AND MODELING (2023)

Article Chemistry, Physical

Adiabatic extraction of nonlinear optical properties from real-time time-dependent electronic-structure theory

Benedicte Sverdrup Ofstad, Hakon Emil Kristiansen, Einar Aurbakken, Oyvind Sigmundson Schoyen, Simen Kvaal, Thomas Bondo Pedersen

Summary: Real-time simulations of laser-driven electron dynamics allow for the extraction of molecular optical properties through all orders in response theory. However, accuracy deteriorates for higher-order responses due to nonadiabatic effects caused by the finite-time ramping of the external laser field. Three different approaches for extracting electrical properties from real-time electronic-structure simulations are investigated. Quadratic ramping is found to yield highly accurate results at approximately half the computational cost for polarizabilities, hyperpolarizabilities, and a measure of reliability.

JOURNAL OF CHEMICAL PHYSICS (2023)

Article Chemistry, Physical

Smooth Things Come in Threes: A Diabatic Surrogate Model for Conical Intersection Optimization

Ignacio Fdez Galvan, Roland Lindh

Summary: In this study, a pseudodiabatic surrogate model is developed based on Gaussian process regression, which accurately reproduces the adiabatic surfaces and significantly reduces the computational effort required to obtain minimum energy crossing points using the restricted variance optimization method.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2023)

Article Chemistry, Physical

A Multiconfigurational Wave Function Implementation of the Frenkel Exciton Model for Molecular Aggregates

Andy Kaiser, Razan E. Daoud, Francesco Aquilante, Oliver Kuhn, Luca De Vico, Sergey I. Bokarev

Summary: We implemented the Frenkel exciton model into the OpenMolcas program package to calculate collective electronic excited states of molecular aggregates. Our protocol does not rely on diabatization schemes or supermolecule calculations, and the use of Cholesky decomposition for pair interactions improves computational efficiency. We applied our method to two test systems and compared it with the dipole approximation.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2023)

Article Chemistry, Physical

The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

Giovanni Li Manni, Ignacio Fdez. Galvan, Ali Alavi, Flavia Aleotti, Francesco Aquilante, Jochen Autschbach, Davide Avagliano, Alberto Baiardi, Jie J. Bao, Stefano Battaglia, Letitia Birnoschi, Alejandro Blanco-Gonzalez, Sergey I. Bokarev, Ria Broer, Roberto Cacciari, Paul B. Calio, Rebecca K. Carlson, Rafael Carvalho Couto, Luis Cerdan, Liviu F. Chibotaru, Nicholas F. Chilton, Jonathan Richard Church, Irene Conti, Sonia Coriani, Juliana Cuellar-Zuquin, Razan E. Daoud, Nike Dattani, Piero Decleva, Coen de Graaf, Mickael G. Delcey, Luca De Vico, Werner Dobrautz, Sijia S. Dong, Rulin Feng, Nicolas Ferre, Michael Filatov (Gulak), Laura Gagliardi, Marco Garavelli, Leticia Gonzalez, Yafu Guan, Meiyuan Guo, Matthew R. Hennefarth, Matthew R. Hermes, Chad E. Hoyer, Miquel Huix-Rotllant, Vishal Kumar Jaiswal, Andy Kaiser, Danil S. Kaliakin, Marjan Khamesian, Daniel S. King, Vladislav Kochetov, Marek Krosnicki, Arpit Arun Kumaar, Ernst D. Larsson, Susi Lehtola, Marie-Bernadette Lepetit, Hans Lischka, Pablo Lopez Rios, Marcus Lundberg, Dongxia Ma, Sebastian Mai, Philipp Marquetand, Isabella C. D. Merritt, Francesco Montorsi, Maximilian Morchen, Artur Nenov, Vu Ha Anh Nguyen, Yoshio Nishimoto, Meagan S. Oakley, Massimo Olivucci, Markus Oppel, Daniele Padula, Riddhish Pandharkar, Quan Manh Phung, Felix Plasser, Gerardo Raggi, Elisa Rebolini, Markus Reiher, Ivan Rivalta, Daniel Roca-Sanjuan, Thies Romig, Arta Anushirwan Safari, Aitor Sanchez-Mansilla, Andrew M. Sand, Igor Schapiro, Thais R. Scott, Javier Segarra-Marti, Francesco Segatta, Dumitru-Claudiu Sergentu, Prachi Sharma, Ron Shepard, Yinan Shu, Jakob K. Staab, Tjerk P. Straatsma, Lasse Kragh Sorensen, Bruno Nunes Cabral Tenorio, Donald G. Truhlar, Liviu Ungur, Morgane Vacher, Valera Veryazov, Torben Arne Voss, Oskar Weser, Dihua Wu, Xuchun Yang, David Yarkony, Chen Zhou, J. Patrick Zobel, Roland Lindh

Summary: This article describes the developments of the open-source OpenMolcas chemistry software environment since spring 2020, focusing on the novel functionalities in the stable branch and interfaces with other packages. These developments cover a wide range of topics in computational chemistry and provide an overview of the chemical phenomena and processes that OpenMolcas can address.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2023)

Review Chemistry, Multidisciplinary

MultiPsi: A python-driven MCSCF program for photochemistry and spectroscopy simulations on modern HPC environments

Mickael G. Delcey

Summary: MultiPsi is an open-source MCSCF program that calculates ground and excited states properties of strongly correlated systems. It is written in Python/C++ and is highly modular, making it suitable for development and teaching. The code is also efficient and designed for modern high-performance computing environments.

WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE (2023)

Review Chemistry, Multidisciplinary

Time-dependent coupled-cluster theory

Benedicte Sverdrup Ofstad, Einar Aurbakken, Oyvind Sigmundson Schoyen, Hakon Emil Kristiansen, Simen Kvaal, Thomas Bondo Pedersen

Summary: In recent years, there has been growing interest in time-dependent coupled-cluster (TDCC) theory for simulating laser-driven electronic dynamics in atoms and molecules, as well as molecular vibrational dynamics. This review covers different types of single-reference TDCC theory based on orthonormal static, orthonormal time-dependent, or biorthonormal time-dependent spin orbitals. The time-dependent extension of equation-of-motion coupled-cluster theory and various applications of TDCC methods are also discussed, including the calculation of linear absorption spectra, response functions, high harmonic generation spectra, and ionization dynamics. Additionally, the role of TDCC theory in finite-temperature many-body quantum mechanics and other application areas is briefly described.

WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE (2023)

Article Chemistry, Physical

Characterizing Conical Intersections in DNA/RNA Nucleobases with Multiconfigurational Wave Functions of Varying Active Space Size

Juliana Cuellar-Zuquin, Ana Julieta Pepino, Ignacio Fdez Galvan, Ivan Rivalta, Francesco Aquilante, Marco Garavelli, Roland Lindh, Javier Segarra-Marti

Summary: We characterized the photochemically relevant conical intersections between different DNA/RNA nucleobases using CASSCF algorithms. Our results show that the size of the active space significantly affects the conical intersection topographies, while the basis set size seems to have a minor effect. We ruled out structural changes as a key factor and highlighted the importance of accurately describing the electronic states involved in these intersections.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2023)

Article Chemistry, Physical

Complex Linear Response Functions for a Multiconfigurational Self-Consistent Field Wave Function in a High Performance Computing Environment

Mikael Scott, Mickael G. G. Delcey

Summary: This article presents novel developments for the efficient evaluation of complex linear response functions of a multiconfigurational self-consistent field (MCSCF) wave function. The direct evaluation of linear response properties using the complex polarization propagator (CPP) approach is implemented within both the Tamm-Dancoff approximation (TDA) and the random phase approximation (RPA). The code's performance is illustrated with numerical examples, demonstrating its capability to handle large-scale MC-CPP calculations as well as the effect of including or excluding core orbitals in X-ray spectroscopy for small covalent metal complexes.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2023)

Article Chemistry, Physical

Cost-Efficient High-Resolution Linear Absorption Spectra through Extrapolating the Dipole Moment from Real-Time Time-Dependent Electronic-Structure Theory

Eirill Hauge, Hakon Emil Kristiansen, Lukas Konecny, Marius Kadek, Michal Repisky, Thomas Bondo Pedersen

Summary: We propose a novel function fitting method for approximating the propagation of the time-dependent electric dipole moment from real-time electronic structure calculations. The method achieves arbitrary spectral resolution through extrapolation by fitting shorter dipole trajectories. Numerical testing demonstrates that this fitting method can reproduce high-resolution spectra using short dipole trajectories.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2023)

Article Chemistry, Physical

Multiconfigurational Pair-Density Functional Theory Is More Complex than You May Think

Gabriel L. S. Rodrigues, Mikael Scott, Mickael G. Delcey

Summary: Multiconfigurational pair-density functional theory (MC-PDFT) is an inexpensive way to describe both strong and dynamic correlations. This study demonstrates that the previously neglected imaginary component is actually necessary to reproduce the correct physical behavior, especially in low-spin open shell systems.

JOURNAL OF PHYSICAL CHEMISTRY A (2023)

Article Chemistry, Multidisciplinary

Deep learning metal complex properties with natural quantum graphs

Hannes Kneiding, Ruslan Lukin, Lucas Lang, Simen Reine, Thomas Bondo Pedersen, Riccardo De Bin, David Balcells

Summary: This paper introduces a method for studying transition metal complexes (TMCs) using deep graph learning, which utilizes electronic structure data from natural bond orbital (NBO) analysis and develops a representation called natural quantum graph (NatQG). With this method, the quantum properties of TMCs can be predicted, and the performance is better compared to traditional descriptor-based methods.

DIGITAL DISCOVERY (2023)

Article Chemistry, Physical

The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

Giovanni Li Manni, Ignacio Fdez. Galvan, Ali Alavi, Flavia Aleotti, Francesco Aquilante, Jochen Autschbach, Davide Avagliano, Alberto Baiardi, Jie J. Bao, Stefano Battaglia, Letitia Birnoschi, Alejandro Blanco-Gonzalez, Sergey I. Bokarev, Ria Broer, Roberto Cacciari, Paul B. Calio, Rebecca K. Carlson, Rafael Carvalho Couto, Luis Cerdan, Liviu F. Chibotaru, Nicholas F. Chilton, Jonathan Richard Church, Irene Conti, Sonia Coriani, Juliana Cuellar-Zuquin, Razan E. Daoud, Nike Dattani, Piero Decleva, Coen de Graaf, Mickael G. Delcey, Luca De Vico, Werner Dobrautz, Sijia S. Dong, Rulin Feng, Nicolas Ferre, Michael Filatov(Gulak), Laura Gagliardi, Marco Garavelli, Leticia Gonzalez, Yafu Guan, Meiyuan Guo, Matthew R. Hennefarth, Matthew R. Hermes, Chad E. Hoyer, Miquel Huix-Rotllant, Vishal Kumar Jaiswal, Andy Kaiser, Danil S. Kaliakin, Marjan Khamesian, Daniel S. King, Vladislav Kochetov, Marek Krosnicki, Arpit Arun Kumaar, Ernst D. Larsson, Susi Lehtola, Marie-Bernadette Lepetit, Hans Lischka, Pablo Lopez Rios, Marcus Lundberg, Dongxia Ma, Sebastian Mai, Philipp Marquetand, Isabella C. D. Merritt, Francesco Montorsi, Maximilian Morchen, Artur Nenov, Vu Ha Anh Nguyen, Yoshio Nishimoto, Meagan S. Oakley, Massimo Olivucci, Markus Oppel, Daniele Padula, Riddhish Pandharkar, Quan Manh Phung, Felix Plasser, Gerardo Raggi, Elisa Rebolini, Markus Reiher, Ivan Rivalta, Daniel Roca-Sanjuan, Thies Romig, Arta Anushirwan Safari, Aitor Sanchez-Mansilla, Andrew M. Sand, Igor Schapiro, Thais R. Scott, Javier Segarra-Marti, Francesco Segatta, Dumitru-Claudiu Sergentu, Prachi Sharma, Ron Shepard, Yinan Shu, Jakob K. Staab, Tjerk P. Straatsma, Lasse Kragh Sorensen, Bruno Nunes Cabral Tenorio, Donald G. Truhlar, Liviu Ungur, Morgane Vacher, Valera Veryazov, Torben Arne Voss, Oskar Weser, Dihua Wu, Xuchun Yang, David Yarkony, Chen Zhou, J. Patrick Zobel, Roland Lindh

Summary: This article describes the recent developments in the open-source chemistry software environment, OpenMolcas, since spring 2020. It focuses on the new functionalities and interfaces with other packages. The article presents various topics in computational chemistry, including electronic structure theory, electronic spectroscopy simulations, molecular structure optimizations, ab initio molecular dynamics, and other new features. Overall, it highlights the capabilities of OpenMolcas in addressing chemical phenomena and processes, making it an attractive platform for advanced atomistic computer simulations.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2023)

No Data Available