4.5 Article

Modeling the electromechanical impedance technique for the assessment of dental implant stability

Journal

JOURNAL OF BIOMECHANICS
Volume 48, Issue 10, Pages 1713-1720

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2015.05.020

Keywords

Electromechanical impedance method; Dental implants; Dental stability; Finite element method; Osseointegration

Funding

  1. Universita degli Studi di Palermo [capitolo 3100400000000, con impegni n. 2016/2012, 3095/2009 e 1823/2010]

Ask authors/readers for more resources

We simulated the electromechanical impedance (EMI) technique to assess the stability of dental implants. The technique consists of bonding a piezoelectric transducer to the element to be monitored. When subjected to an electric field, the transducer induces structural excitations which, in turn, affect the transducer's electrical admittance. As the structural vibrations depend on the mechanical impedance of the element, the measurement of the transducer's admittance can be exploited to assess the element's health. In the study presented in this paper, we created a 3D finite element model to mimic a transducer bonded to the abutment of a dental implant placed in a host bone site. We simulated the healing that occurs after surgery by changing Young's modulus of the bone-implant interface. The results show that as Young's modulus of the interface increases, i.e. as the mechanical interlock of the implant within the bone is achieved, the electromechanical characteristic of the transducer changes. The model and the findings of this numerical study may be used in the future to predict and interpret experimental data, and to develop a robust and cost-effective method for the assessment of primary and secondary dental implant stability. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available