4.4 Article

A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax:: the unidirectional TreT pathway

Journal

ARCHIVES OF MICROBIOLOGY
Volume 190, Issue 3, Pages 355-369

Publisher

SPRINGER
DOI: 10.1007/s00203-008-0377-3

Keywords

trehalose metabolism; unidirectional trehalose glycosyltransferring synthase (TreT); Thermoproteus tenax; hyperthermophile; Archaea

Categories

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [Si642/6-1]

Ask authors/readers for more resources

In the genome of the hyperthermophilic archaeon Thermoproteus tenax a gene (treS/P) encoding a protein with similarity to annotated trehalose phosphorylase (TreP), trehalose synthase (TreS) and more recently characterized trehalose glycosyltransferring synthase (TreT) was identified. The treS/P gene as well as an upstream located ORF of unknown function (orfY) were cloned, heterologously expressed in E. coli and purified. The enzymatic characterization of the putative TreS/P revealed TreT activity. However, contrary to the previously characterized reversible TreT from Thermococcus litoralis and Pyrococcus horikoshii, the T. tenax enzyme is unidirectional and catalyzes only the formation of trehalose from UDP (ADP)-glucose and glucose. The T. tenax enzyme differs from the reversible TreT of T. litoralis by its preference for UDP-glucose as co-substrate. Phylogenetic and comparative gene context analyses reveal a conserved organization of the unidirectional TreT and OrfY gene cluster that is present in many Archaea and a few Bacteria. In contrast, the reversible TreT pathway seems to be restricted to only a few archaeal (e.g. Thermococcales) and bacterial (Thermotogales) members. Here we present a new pathway exclusively involved in trehalose synthesis--the unidirectional TreT pathway--and discuss its physiological role as well as its phylogenetic distribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available