4.3 Article Proceedings Paper

Resistance switching behavior of ZnO resistive random access memory with a reduced graphene oxide capping layer

Journal

JAPANESE JOURNAL OF APPLIED PHYSICS
Volume 54, Issue 4, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.7567/JJAP.54.04DJ08

Keywords

-

Funding

  1. National Science Council, ROC [NSC 102-2221-E-035-081]
  2. [MOST 103-2221-E-131-010]

Ask authors/readers for more resources

In this work, we investigate the characteristics of ZnO resistive random access memory (RRAM) with a reduced graphene oxide (rGO) capping layer and the polarity effect of the SET/RESET bias on the RRAM. The rGO film insertion enhances the stability of the current-voltage (I-V) switching curve and the superior resistance ratio (similar to 10(5)) of high-resistance state (HRS) to low-resistance state (LRS). Using the appropriate polarity of the SET/RESET bias applied to the rGO-capped ZnO RRAM enables the oxygen ions to move mainly at the interface of the rGO and ZnO films, resulting in the best performance. Presumably, the rGO film acts as an oxygen reservoir and enhances the easy in and out motion of the oxygen ions from the rGO film. The rGO film also prevents the interaction of oxygen ions and the Al electrode, resulting in excellent performance. In a pulse endurance test, the rGO-capped ZnO RRAM reveals superior endurance of up to 10(8) cycles over that of the ZnO RRAM without rGO insertion (10(6) cycles). (C) 2015 The Japan Society of Applied Physics

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available