4.6 Article

Icosahedral ordering in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass

Journal

APPLIED PHYSICS LETTERS
Volume 92, Issue 20, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2931702

Keywords

-

Ask authors/readers for more resources

This paper presents a computational evidence of icosahedral short and medium range ordering in Zr(41)Ti(14)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass using ab initio molecular dynamics simulation. It is found that 1551, 1541, and 1431 types of bond pairs are pronounced in both the liquid and glass states, resulting in icosahedral coordinate polyhedra at low temperatures. By linking the individual icosahedra through vertex-, edge-, face-, and intercross-shared atoms, icosahedral medium range ordering is formed. The predicted homogenized structure factor and pair correlation function of the glass structure have been confirmed to be in agreement with the experimental results. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Metallurgy & Metallurgical Engineering

Ordering in liquid and its heredity impact on phase transformation of Mg-Al-Ca alloys

Jiang You, Cheng Wang, Shun-Li Shang, Yipeng Gao, Hong Ju, Hong Ning, Yi Wang, Hui-Yuan Wang, Zi-Kui Liu

Summary: Tailoring phase formation in alloys to achieve desired mechanical properties, especially for complicated multi-phase alloys, is a long-sought goal. The nucleation of competitive crystalline phases during solidification depends on the nature of the liquid. In this study, ab initio molecular dynamics simulations were used to reveal the liquid configuration of Mg-Al-Ca alloys and its effect on the transformation of Ca-containing Laves phase from Al 2 Ca to Mg 2 Ca with increasing Ca/Al ratio ( r Ca / Al ).

JOURNAL OF MAGNESIUM AND ALLOYS (2023)

Article Nanoscience & Nanotechnology

An additively manufactured ?-based high Nb-TiAl composite via coherent interface regulation

Hui Xue, Yongfeng Liang, Hui Peng, Yanli Wang, Shun-Li Shang, Zi-Kui Liu, Junpin Lin

Summary: In this study, a microstructural modification technique was used to improve the plasticity and interfacial cohesion of TiAl alloys by introducing Ti5Si3 and Ti2AlN precipitates using additive manufacturing techniques.

SCRIPTA MATERIALIA (2023)

Article Nanoscience & Nanotechnology

Quantifying the degree of disorder and associated phenomena in materials through zentropy: Illustrated with Invar Fe3Pt

Shun -Li Shang, Yi Wang, Zi-Kui Liu

Summary: In this study, a method to quantify the degree of disorder using configurational entropy is proposed, which can be used to predict the macroscopic functionalities of materials. The capability of this approach is demonstrated by calculating Invar Fe3Pt and comparing the results with experimental data.

SCRIPTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Ab Initio Modeling on The Thermodynamic and Temperature-Dependent Elastic Properties of Subsystems of The FCC FeNiCoCr Medium Entropy Alloys (MEAs)

Songge Yang, Yi Wang, Zi-kui Liu, Brajendra Mishra, Yu Zhong

Summary: This study systematically investigates the stability, phonon spectra, thermodynamics, and temperature-dependent elasticity of subsystems of FCC FeNiCoCr MEAs using the ab initio approach. By utilizing the quasi-harmonic approximation and the innovative Zentropy theory, the thermodynamic and elastic properties of FeNi, NiCo, FeNiCo, and FeNiCoCr MEAs considering magnetic transition were successfully predicted. The predicted results are in good agreement with available experimental data and CALPHAD prediction.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Ab initio studies on structural and thermodynamic properties of magnetic Fe

Songge Yang, Yi Wang, Zi-Kui Liu, Yu Zhong

Summary: This study investigates the total energy, phonon spectra, and thermodynamic properties of different polymorphs of pure Fe using the ab initio approach. The energy vs. volume curves and phonon spectra obtained show good agreement with previous calculations and experimental data. The thermodynamic properties are estimated using the quasiharmonic approximation, and a superposition approach based on Zentropy theory is used to predict magnetic transition temperatures and thermodynamic properties of pure Fe. The results demonstrate good agreement with experimental data and CALPHAD modeling.

COMPUTATIONAL MATERIALS SCIENCE (2023)

Article Chemistry, Physical

Stacking-disordered CoSn3 and tetragonally stacked CoSn4 formed during solid-state interdiffusion of Co and Sn

A. Leineweber, M. Hoppe, S. Martin, C. Schimpf, S. L. Shang, Z. K. Liu

Summary: The reactive interaction between Sn-rich solders and transition metals at high temperatures leads to the formation of intermetallic phases. This study focuses on the formation of intermetallics between Co and Sn under solid-state conditions. The crystal structures and microstructures were characterized using X-ray diffraction and electron microscopy techniques. The results revealed different crystal structures for CoSn3 and CoSn4 compared to previous studies. The criteria for accurate phase identification using XRD and EBSD methods were elaborated, including distinguishing different polytypes of CoSn3 or CoSn4.

INTERMETALLICS (2023)

Article Engineering, Mechanical

Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations

Adnan Eghtesad, Qixiang Luo, Shun -Li Shang, Ricardo A. Lebensohn, Marko Knezevic, Zi-Kui Liu, Allison M. Beese

Summary: This study combines a full-field crystal plasticity model with a first principles-informed dislocation density hardening law and a machine learning approach to investigate the microstructural features correlated with micromechanical field localization in polycrystalline Ni. The results show that regions near grain boundaries, higher Schmid factors, low slip transmissions, and high intergranular misorientations are more prone to being micromechanical hotspots. The integration of physics-based crystal plasticity with machine learning provides insights into the initiation zones of micromechanical damage in polycrystalline metals.

INTERNATIONAL JOURNAL OF PLASTICITY (2023)

Article Chemistry, Analytical

Electrochemical properties of Gd(III) ions in LiCl-KCl-GdCl3 at 723-1023 K

Stephanie Castro Baldivieso, Nathan D. Smith, Zi-Kui Liu, Hojong Kim

Summary: The electrochemical behavior of Gd(III) ions in molten LiCl-KCl-GdCl3 was studied. A single reduction-oxidation wave was observed, confirming a single-step, 3-electron transfer Gd(III)/Gd transition. The cathodic peak potential showed minimal change over a wide range of scan rates, indicating reversible electrode process. The diffusivity values of Gd(III) ions were determined, and the Gd-Bi alloy reference electrode exhibited high stability.

JOURNAL OF ELECTROANALYTICAL CHEMISTRY (2023)

Article Nanoscience & Nanotechnology

Parameter-free prediction of phase transition in PbTiO3 through combination of quantum mechanics and statistical mechanics

Zi-Kui Liu, Shun-Li Shang, Jinglian Du, Yi Wang

Summary: The thermodynamics of ferroelectric materials and their ferroelectric to paraelectric (FE-PE) transitions are often described by phenomenological Landau theory and more recently by effective Hamiltonian and various potentials. In this study, the zentropy theory is proposed to predict the FE-PE transition without parameter fitting. By considering the total entropy of a system as a weighted sum of entropies of configurations and the statistical entropy among the configurations, the zentropy theory accurately predicts the FE-PE transition in PbTiO3 using first-principles domain wall energies as the only input parameter.

SCRIPTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Thermodynamic and electron transport properties of Ca3Ru2O7 from first-principles phonon calculations and Boltzmann transport theory

Yi Wang, Yihuang Xiong, Tiannan Yang, Yakun Yuan, Shun -Li Shang, Zi-Kui Liu, Venkatraman Gopalan, Ismaila Dabo, Long-Qing Chen

Summary: This study presents a first-principles-based approach to calculate finite temperature thermal and electronic transport properties. It can be used to model and understand structural evolution during electronic, magnetic, and structural phase transitions at the mesoscale. A computationally tractable model is introduced to estimate electron relaxation time and its temperature dependence. The model is applied to Ca3Ru2O7 to investigate the electrical resistivity across the electronic phase transition at 48 K. The quasiharmonic phonon approach and Boltzmann transport theory are employed to account for thermal expansion and calculate the temperature dependence of electrical conductivity.

PHYSICAL REVIEW B (2023)

Article Nanoscience & Nanotechnology

Influence of accelerated corrosion on Al/steel RSW joints by in situ compression tests

Bo Pan, Hui Sun, Dongyue Xie, Shun-Li Shang, Nan Li, Blair E. Carlson, Yumeng Li, Zi-Kui Liu, Jingjing Li

Summary: This study investigates the correlations between galvanic corrosion, intermetallic compound formation, and welding energy input with regards to the initiation and propagation of micro-cracks in micropillars of resistant spot welding joints between aluminum and steel. The results show that higher welding energy leads to more severe corrosion and easier cracks initiation and propagation. Micropillars from the high welding energy region have a higher average yielding stress due to the thicker intermetallic compound layer.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Chemistry, Physical

Synergetic influence of nitrogen-doped species and hollow microporous structure on surface active sites of carbonaceous catalysts for oxygen reduction reaction of Zn-air battery

Kaixin Liang, Hui Zhang, Yongfeng Liang, Shun-Li Shang, Zi-Kui Liu, Junpin Lin

Summary: By coordinating nitrogen doping and pore structure, N-doped porous carbon materials were fabricated with highly comparable properties to commercial Pt/C catalysts. These carbon catalysts exhibited high catalytic activity and peak power density, making them highly feasible for practical applications.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

No Data Available