4.6 Article

Selection of PCB binding phages as potential biorecognition elements for food and environmental monitoring

Journal

ANALYTICAL METHODS
Volume 3, Issue 8, Pages 1865-1871

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ay05059a

Keywords

-

Funding

  1. Institute for the promotion of innovation by science and technology in Flanders (Belgium)
  2. Federal Public Service of Health, Food Chain Safety and Environment [RT 07/11 INVI-TRAB, RF6204 ERGOT]

Ask authors/readers for more resources

In order to assess and avoid risks for both human and environmental health, there is a high need for cost-effective and sensitive detection systems suitable for the monitoring of chemical contaminants in food and the environment. Due to their high sensitivity and selectivity, affinity-based detection systems are interesting for monitoring tools. Antibodies have long been the most popular affinity-based recognition elements, however, recently different novel affinity-based recognition elements with improved characteristics, like specificity, stability and cost-efficiency, have gained attention. In the present study, one type of such novel affinity-based recognition elements, namely landscape phages were evaluated as substitute antibodies for detection of PCB. These phages with affinity for PCBs were selected from a landscape phage library, in which each phage displays an 8-mer peptide at all 4000 major coat proteins pVIII. Landscape phages have potential as biorecognition elements, because of their excellent characteristics, such as high affinity and specificity, fast, cheap and animal-friendly manufacturing process with low batch-to-batch variations and superior stability, which allow them to operate as elements of detector systems in complex environmental and food matrices. Phages with a high specificity for PCB106 were isolated from the landscape phage library. Using surface plasmon resonance (SPR) it was shown that the selected phages bind specifically PCB106 and do not bind PCB72 and PCB118. The dissociation constants (K-d) of the phage binding with PCB106 were in mu M range. After further improvement of their binding activity, the specific PCB-binding phages can be used as biorecognition elements for food and environmental monitoring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Chemistry, Analytical

Magnetic mesoporous Fe3O4@nSiO2@mSiO2 nanoparticles for high-throughput mass spectrometry detection of hydrolyzed products of organophosphorus nerve agents

Gang Qu, Yuxin Zhao, Qiaoli Zhang, Jina Wu, Xiaosen Li, Yang Yang, Shilei Liu

Summary: In this study, magnetic mesoporous materials combined with real-time in situ mass spectrometry were used for the high-throughput detection of hydrolyzed products of organophosphorus nerve agents. The method showed good linearity, low limits of detection and quantification, and high extraction recoveries. The magnetic preparation method used was quick, cost-effective, rugged, and safe. The results demonstrated the potential of this method for rapid and efficient determination of the target analytes in environmental samples.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

Voltammetric methods for electrochemical characterization and quantification of artemether-based antimalarials

Anna Hildebrand, Mariam Merchant, Danny O'Hare

Summary: Substandard and falsified artemisinin derivatives in antimalarials have caused significant deaths and economic losses. This study evaluates the feasibility of voltammetric methods for identifying and quantifying artemether. The findings suggest that electrochemical analysis shows promise as a method for artemether identification and quantification.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

An impedimetric immunosensor for diagnosis of Brazilian spotted fever in blood plasma

Marx Osorio Araujo Pereira, Alvaro Ferreira Junior, Edson Silvio Batista Rodrigues, Helena Mulser, Giovanna Nascimento de Mello e Silva, Wallans Torres Pio dos Santos, Eric de Souza Gil

Summary: Brazilian spotted fever (BSF) is a serious and rapidly evolving disease. A new impedimetric immunosensor was developed for rapid diagnosis by measuring specific antibodies in plasma. The sensor demonstrated selectivity and accuracy, and has potential for important applications in diagnostic testing.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

Method validation for (ultra)-trace element concentrations in urine for small sample volumes in large epidemiological studies: application to the population-based epidemiological multi-ethnic study of atherosclerosis (MESA)

Kathrin Schilling, Ronald A. Glabonjat, Olgica Balac, Marta Galvez-Fernandez, Arce Domingo-Relloso, Vesna Slavkovich, Jeff Goldsmith, Miranda R. Jones, Tiffany R. Sanchez, Ana Navas-Acien

Summary: Analysis of trace elements in urine is an important tool for assessing exposures, diagnosing nutritional status, and guiding public health and healthcare intervention. This study provides a sensitive method for analyzing 18 elements in urine samples, using only 100 μL. The results show good accuracy and sensitivity of the method.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

Selective purification and rapid quantitative detection of spores using a stepped magnetic flow device

Mengya Li, Shijie Liu, Shiliang Guo, Dong Liang, Miaoyun Li, Yaodi Zhu, Lijun Zhao, Jong-Hoon Lee, Gaiming Zhao, Yangyang Ma, Yanxia Liu

Summary: In this study, a magnetic flow device was developed to purify spores in a culture medium system. The device used magnetic nanoparticles to absorb vegetative cells, separating them from the spores. The achieved purity of the collected spores was over 95%. The study also demonstrated a rapid quantitative detection method using Raman spectroscopy.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

Construction of a molecularly imprinted fluorescent sensor based on an amphiphilic block copolymer-metal-organic framework for the detection of oxytetracycline in milk

Wanqiong Liu, Zixuan Wu, Jianwei Peng, Zebin Xu, Yong Liang

Summary: Metal-organic frameworks (MOFs) are effective carriers for molecular imprinting, but their poor dispersibility in aqueous solution is a significant drawback. In this study, we have applied amphiphilic block copolymers and molecularly imprinted technology on MOFs to improve the hydrophilicity of molecularly imprinted fluorescent materials.

ANALYTICAL METHODS (2024)