4.8 Article

Ultrasensitive and Selective Electrochemical Diagnosis of Breast Cancer Based on a Hydrazine-Au Nanoparticle-Aptamer Bioconjugate

Journal

ANALYTICAL CHEMISTRY
Volume 85, Issue 2, Pages 1058-1064

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac302923k

Keywords

-

Funding

  1. National Research Foundation
  2. Ministry of Education, Science and Technology, South Korea [20100029128]

Ask authors/readers for more resources

Human epidermal growth factor receptor 2 (HER2) and HER2-overexpressing breast cancer cells were detected using an electrochemical immunosensor combined with hydrazine and aptamer-conjugated gold nanoparticles (AuNPs). The sensor probe was fabricated by covalently immobilizing anti-HER2 onto a nanocomposite layer that was composed of self-assembled 2,5-bis(2-thienyl)-1H-pyrrole-1-(p-benzoic acid) (DPB) on AuNPs. The hydrazine AuNP aptamer bioconjugate, where the hydrazine reductant was directly attached onto AuNPs to avoid the nonspecific deposition of silver on the sensor surface, was designed and used to reduce silver ion for signal amplification selectively. The silver-stained target cells were visualized easily by the bare eye and an optical microscope, and the cells were quantitatively analyzed using stripping voltammetry. The parameters affecting the analytical response were optimized. The proposed sensor was capable of differentiating between HER2-positive breast cancer cells and HER2-negative cells. This method exhibited an excellent diagnosis method for the ultrasensitive detection of SK-BR-3 breast cancer cells in human serum samples with a detection limit of 26 cells/mL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available