4.8 Article

In Situ Hydrothermal Grown Silicalite-1 Coating for Solid-Phase Microextraction

Journal

ANALYTICAL CHEMISTRY
Volume 84, Issue 5, Pages 2366-2372

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac203119k

Keywords

-

Funding

  1. National Science Foundation of China [21077049]
  2. Ministry of Science and Technology of China [2010DFA91910]

Ask authors/readers for more resources

A novel fiber coated with silicalite-1 for solid-phase microextraction (SPME) was prepared by in situ hydrothermal growth method. Six substituted benzenes (nitrobenzene, p-dichlorobenzene, m-dichlorobenzene, 1,3,5-trichlorobenzene, p-chloronitrobenzene, and m-chloronitrobenzene) were employed as model analytes. The fiber exhibited high thermal stability (little weight loss up to 600 degrees C) and high chemical stability (no loss of function after sequential immersion in 0.1 M HCl, 0.01 M NaOH, methanol, and n-hexane each for at least 4 h). Compared with commercial fibers, 3-6 times higher extraction efficiencies were shown on the fiber for mono- and p-substituted benzenes. Under the preoptimized conditions, the fiber afforded satisfactory enhancement factors (517-1292), wide linear ranges (more than 2 orders of magnitude), low limits of detection (0.001-0.130 mu g/L), and acceptable repeatability (<9.6%) and reproducibility (<8.8%). Furthermore, the fiber offered distinct shape-selectivity attributed to the uniform molecular-scale pore structure of silicalite-1. The ratios of extraction were approximately 70 between p-dichlorobenzene and 1,3,5-trichlorobenzene, 30 between p-chloronitrobenzene and m-chloronitrobenzene, and 3 between p-dichlorobenzene and m-dichlorobenzene. After pore narrowing by surface modification with SiCl4, the selectivity for p-dichlorobenzene over m-dichlorobenzene was further enhanced by another 10 times. Finally, the fiber was successfully applied to analysis of a real water sample.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available