4.8 Article

Effectiveness of Charged Noncovalent Polymer Coatings against Protein Adsorption to Silica Surfaces Studied by Evanescent-Wave Cavity Ring-Down Spectroscopy and Capillary Electrophoresis

Journal

ANALYTICAL CHEMISTRY
Volume 81, Issue 24, Pages 10172-10178

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac902128n

Keywords

-

Funding

  1. Dutch Technology Foundation STW, applied science division of NWO
  2. Ministry of Economic Affairs
  3. Dutch Foundation for Fundamental Research of Matter (FOM)

Ask authors/readers for more resources

Protein adsorption to silica surfaces is a notorious problem in analytical separations. Evanescent-wave cavity ring-down spectroscopy (EW-CRDS) and capillary electrophoresis (CE) were employed to investigate the capability of positively charged polymer coatings to minimize the adsorption of basic proteins. Adsorption of cytochrome c (cyt c) to silica coated with a single layer of polybrene (PB), or a triple layer of PB, dextran sulfate (DS), and PB, was studied and compared to bare silica. Direct analysis of silica surfaces by EW-CRDS revealed that both coatings effectively reduce irreversible protein adsorption. Significant adsorption was observed only for protein concentrations above 400 mu M, whereas the PB-DS-PB coating was shown to be most effective and stable. CE analyses of cyt c were performed with and without the respective coatings applied to the fused-silica capillary wall. Monitoring of the electroosmotic flow and protein peak areas indicated a strong reduction of irreversible protein adsorption by the positively charged coatings. Determination of the electrophoretic mobility and peak width of cyt c revealed reversible protein adsorption to the PB coating. It is concluded that the combination of results from ETV-CRDS and CE provides highly useful information on the adsorptive characteristics of bare and coated silica surfaces toward basic proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available