4.3 Article

Prokineticin 2 modulates the excitability of area postrema neurons in vitro in the rat

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00620.2009

Keywords

circadian regulation; circumventricular organ; enkephalin; sodium channels

Categories

Funding

  1. Heart and Stroke Foundation of Ontario
  2. Canadian Institute for Health Research

Ask authors/readers for more resources

Ingves MV, Ferguson AV. Prokineticin 2 modulates the excitability of area postrema neurons in vitro in the rat. Am J Physiol Regul Integr Comp Physiol 298: R617-R626, 2010. First published January 6, 2010; doi:10.1152/ajpregu.00620.2009.-Despite recent evidence describing prokineticin 2 (PK2)-producing neurons and receptors in the dorsomedial medulla, little is known regarding the potential mechanisms by which this circadian neuropeptide acts in the medulla to influence autonomic function. Using whole cell electrophysiology, we have investigated a potential role for PK2 in the regulation of excitability in neurons of the area postrema (AP), a medullary structure known to influence autonomic processes in the central nervous system. In current-clamp recordings, focal application of 1 mu M PK2 reversibly influenced the excitability of the majority of dissociated AP cells tested, producing depolarizations (38%) and hyperpolarizations (28%) in a concentration-dependent manner. Slow voltage ramps and ion-substitution experiments revealed that a PK2-induced Cl- current was responsible for membrane depolarization, whereas hyperpolarizations were the result of inhibition of a nonselective cation current. In contrast to these differential effects on membrane potential, nearly all neurons that displayed spontaneous activity responded to PK2 with a decrease in spike frequency. These observations are in accordance with voltage-clamp experiments showing that PK2 caused a leftward shift in Na+ channel activation and inactivation gating. Lastly, using post hoc single-cell RT-PCR technology, we have shown that 7 of 10 enkephalin-expressing AP neurons were depolarized by PK2 indicating that PK2 may have specific inhibitory actions on this population of neurons in the AP to reduce their sensitivity to homeostatic signals. These data suggest that the level of AP neuronal excitability may be regulated by PK2, ultimately affecting AP autonomic control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available