4.6 Article

Ameliorative effect of biofabricated ZnO nanoparticles of Trianthema portulacastrum Linn. on dermal wounds via removal of oxidative stress and inflammation

Journal

RSC ADVANCES
Volume 8, Issue 38, Pages 21621-21635

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra03500h

Keywords

-

Ask authors/readers for more resources

An impediment in the process of wound healing can be attributed to reactive oxygen species and inflammation. The curative efficacy of green synthesized Trianthema portulacastrum Linn. zinc oxide nanoparticles (ZnOTP) was investigated in the present study for evaluation of their wound healing potential in rodents. Total phenolic and flavonoid content of ZnOTP was determined, and antioxidant potential was evaluated by the DPPH method. In vitro anti-inflammatory activity of ZnOTP was evaluated by membrane stabilization and albumin denaturation, along with proteinase inhibitory assays. The synthesized ZnOTP were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR) studies, Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) studies. The wound healing potential of ZnOTP was monitored by excision and incision wound models. Analyses confirmed the formation of spherical nanoparticles of 10-20 nm size along with strong signals of zinc and oxygen atoms. Significant results (p < 0.05) of wound contraction rate, epithelialization and histopathology of the healed tissues of rats confirmed the promising wound healing property of ZnOTP. In addition, inflammatory markers, biochemical estimation such as the hydroxyproline content of granulation tissue, and the profile of antioxidant enzymes also supported the wound healing potential of ZnOTP. The present study advocated the attenuation of wounds via antioxidant and anti-inflammatory activities of a green synthesized nano-ointment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available