4.6 Article

Oxygen deficient Pr6O11 nanorod supported palladium nanoparticles: highly active nanocatalysts for styrene and 4-nitrophenol hydrogenation reactions

Journal

RSC ADVANCES
Volume 8, Issue 31, Pages 17504-17510

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra02831a

Keywords

-

Funding

  1. National Natural Science Foundation of China [51572253, 21271165]
  2. Scientific Research Grant of Hefei Science Center of CAS [2015SRG-HSC048]
  3. NSFC [51561135011]
  4. Netherlands Organization for Scientific Research [51561135011]

Ask authors/readers for more resources

The design and development of highly efficient and long lifetime Pd-based catalysts for hydrogenation reactions have attracted significant research interest over the past few decades. Rational selection of supports for Pd loadings with strong metal-support interaction (SMSI) is beneficial for boosting catalytic activity and stability. In this context, we have developed a facile approach for uniformly immobilizing ultra-small Pd nanoparticles (NPs) with a clean surface on a Pr6O11 support by a hydrogen thermal reduction method. The hydrogenations of p-nitrophenol and styrene are used as model reactions to evaluate the catalytic efficiency. The results show highly efficient styrene hydrogenation performance under 1 atm H-2 at room temperature with a TOF value as high as 8957.7 h(-1), and the rate constant value of p-nitrophenol reduction is 0.0191 s(-1). Strong metal-support interaction and good dispersion of Pd nanoparticles, as demonstrated by XPS and HRTEM results, contribute to the excellent hydrogenation performance. Electron paramagnetic resonance (EPR) results suggest the presence of oxygen vacancies in the support, which serve as electron donors and enhance the adsorption and activation of reactants and subsequent conversion into products. Moreover, the catalyst can be recovered and reused up to 10 consecutive cycles without marked loss of activity. Overall, our results indicate that oxygen-deficient Pr6O11 nanorods (NRs) not only play a role as support but also work as the promoter to substantially boost the catalytic activities for organic transformations, therefore, providing a novel strategy to develop other high-performance nanostructured catalysts for environmental sustainability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available