4.8 Article

Engineering 3D Ru/Graphene Aerogel Using Metal-Organic Frameworks: Capture and Highly Efficient Catalytic CO Oxidation at Room Temperature

Journal

SMALL
Volume 14, Issue 16, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201800343

Keywords

aerogel; capture; catalytic oxidation of CO; metal-organic frameworks; ruthenium

Funding

  1. National Key R&D Program of China [2017YFC0210901, 2017YFC0210906]
  2. National Natural Science Foundation of China [51573122, 21722607, 21776190]
  3. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [17KJA430014, 17KJA150009]
  4. Science and Technology Program for Social Development of Jiangsu [BE2015637]
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Noble metals (Au, Pt, and Ru) loaded into carbon supports show excellent performance for CO oxidation. Herein, a tunable metal-organic framework (MOF) coating is applied to a macroscopic 3D Ru/graphene aerogel (Ru/GA) composite, using a facial step-by-step method. The open macroporous structure of the Ru/GA provides pathways for the access and diffusion of reactant and product molecules. The resulting HK (HKUST-1)-containing MOF composite exhibits good performance for CO adsorption. It can simultaneously adsorb and oxidize CO, which improves the reaction rate. In this work, the catalytic efficiency of the resulting catalyst is higher than that (approximate to 48.4%) of the Ru/GA. These findings provide a simple method for increasing the instantaneous concentration of reactants around the catalyst, which in turn increases the reaction rate. The catalytic performances of composites subjected to different pretreatment conditions are also investigated. Hopefully, this finding may provide a feasible direction for the effective management of the diverse environment issues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available