4.6 Article

Bimetallic Au@M (M = Ag, Pd, Fe, and Cu) Nanoarchitectures Mediated by 1,4-Phenylene Diisocyanide Functionalization

Journal

LANGMUIR
Volume 34, Issue 8, Pages 2849-2855

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.7b02705

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Hybridization with gold has attracted a lot of attention in many application areas such as energy, nanomedicine, and catalysts. Here, we demonstrate electrochemical hybridization of two different metals by using bare and 1,4-phenylene diisocyanide (PDI) functionalized gold nanoislands (GNIs) supported on a Si substrate. As pristine GNIs are not tightly locked on the Si surface, bimetallic Au@M (M = Ag, Pd, Fe, and Cu) core-shell type nanostructures are produced by an electric-field induced clustering of GNIs and metal deposition. On the other hand, upon functionalization of GNIs by PDI, 3D island growth on the functionalized GNI template is observed as PDI acts as a protector against the electric-field-induced clustering. Depth profiling X-ray photoelectron spectroscopy reveals no discernible difference in the interfacial electronic structures of hybrid metals prepared by using pristine and PDI-functionalized GNI templates. This work demonstrates a new approach to produce a secured template and to manipulate growth of hybrid nanoparticles on this template supported on a Si substrate by using electrodeposition and organic functionalization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available