4.7 Article

Generalized three phase robust load-flow for radial and meshed power systems with and without uncertainty in energy resources using dynamic radial basis functions neural networks

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 174, Issue -, Pages 96-113

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2017.10.316

Keywords

Dynamic artificial neural networks; Radial basis functions; Load flow; Nonlinear equations

Ask authors/readers for more resources

This paper presents a new approach for robust load-flow in radial and meshed electric power systems. In the presented method, with an acceptable level of accuracy, and even exact, the ability of radial basis function (RBF) artificial neural networks (ANNs) for nonlinear mapping is exploited to solve nonlinear equation set of load flow analysis that can be applied to a wide range of nonlinear equation sets. Unlike Newton Raphson (NR) method, the proposed method does not need to calculate partial derivatives and inverse Jacobian matrix and so has less computation time. Moreover, it is suitable for the radial and ill-conditioned networks that have higher values of R/X ratio. The method includes all types of buses, i.e. PQ PV and Slack buses. The proposed method is a general method which is applicable to all types of power system networks, including radial, meshed, and open-loop. The proposed method is applied to different power and distribution test systems and compared with the other load-flow methods and the results validate its authenticity, robustness, efficiency and accuracy. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available