4.7 Article

Removal of pharmaceuticals from water by clay-cationic starch sorbents

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 190, Issue -, Pages 703-711

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2018.04.174

Keywords

Emerging pollutants; Clay-polymer composites; Cationic starch; Filtration Modeling

Funding

  1. NANOWAT within the ENPI-CBC-MED programme of the European Union [I-B/2.1/049]
  2. Spanish Ministry of Economy and Competitiveness - European Regional Development Fund (FEDER) [CTM2013-42306-R, CTM2016-77168-R]

Ask authors/readers for more resources

Significant concerns have been raised up due to the presence of organic micropollutants in surface waters. The ability of two polymer-clay sorbents based on a functionalized cationic starch was examined for the removal of three pharmaceuticals: atenolol, sulfamethoxazole and diclofenac sodium. In batch experiments, the complex which exhibited a planar conformation of the polymer on the clay surface and higher cationic charge density showed higher sorption of diclofenac and sulfamethoxazole over those of the composite with a loops and tails configuration, but similar with atenolol. The introduction of functional moieties on the polymers that are capable to create a network of hydrogen-bonds with the pollutants promoted their removal as revealed by thermal and infrared techniques: diclofenac molecules formed an ion pair including hydrogen bonds through their secondary amine groups; sulfamethoxazole sorbed by strong electrostatic interactions followed by proton transfer involving its sulphon-nitrogen group and the hydroxyl moieties of the composite. Filtration experiments showed a better performance of the columns made of the composite with higher cationic charge density on the removal of diclofenac and sulfamethoxazole over that of granular activated carbon. The filtration processes were successfully modeled by using an adsorption-convection model which enabled predictions under different operational conditions used in drinking water plants. Experimental removal of diclofenac by filtration within the range found in environmental concentrations was in good agreement with the predicted amounts. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Pairing micropollutants and clay-composite sorbents for efficient water treatment: Filtration and modeling at a pilot scale

Filomena Lelario, Ido Gardi, Yael Mishael, Noam Dolev, Tomas Undabeytia, Shlomo Nir, Laura Scrano, Sabino A. Bufo

APPLIED CLAY SCIENCE (2017)

Article Green & Sustainable Science & Technology

Relative evaluation of probabilistic methods for spatio-temporal wind forecasting

Lars odegaard Bentsen, Narada Dilp Warakagoda, Roy Stenbro, Paal Engelstad

Summary: This study investigates uncertainty modeling in wind power forecasting using different parametric and non-parametric methods. Johnson's SU distribution is found to outperform Gaussian distributions in predicting wind power. This research contributes to the literature by introducing Johnson's SU distribution as a candidate for probabilistic wind forecasting.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

Comparison of ethane recovery processes for lean gas based on a coupled model

Xing Liu, Qiuchen Wang, Yunhao Wen, Long Li, Xinfang Zhang, Yi Wang

Summary: This study analyzes the characteristics of process parameters in three lean gas ethane recovery processes and establishes a prediction and multiobjective optimization model for ethane recovery and system energy consumption. A new method for comparing ethane recovery processes for lean gas is proposed, and the addition of extra coolers improves the ethane recovery. The support vector regression model based on grey wolf optimization demonstrates the highest prediction accuracy, and the multiobjective multiverse optimization algorithm shows the best optimization performance and diversity in the solutions.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

A novel deep-learning framework for short-term prediction of cooling load in public buildings

Cairong Song, Haidong Yang, Xian-Bing Meng, Pan Yang, Jianyang Cai, Hao Bao, Kangkang Xu

Summary: The paper proposes a novel deep learning-based prediction framework, aTCN-LSTM, for accurate cooling load predictions. The framework utilizes a gate-controlled multi-head temporal convolutional network and a sparse probabilistic self-attention mechanism with a bidirectional long short-term memory network to capture both temporal and long-term dependencies in the cooling load sequences. Experimental results demonstrate the effectiveness and superiority of the proposed method, which can serve as an effective guide for HVAC chiller scheduling and demand management initiatives.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

The impact of social interaction and information acquisition on the adoption of soil and water conservation technology by farmers: Evidence from the Loess Plateau, China

Zhe Chen, Xiaojing Li, Xianli Xia, Jizhou Zhang

Summary: This study uses survey data from the Loess Plateau in China to evaluate the impact of social interaction on the adoption of soil and water conservation (SWC) technology by farmers. The study finds that social interaction increases the likelihood of farmers adopting SWC, and internet use moderates this effect. The positive impact of social interaction on SWC adoption is more pronounced for farmers in larger villages and those who join cooperative societies.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

Study on synergistic heat transfer enhancement and adaptive control behavior of baffle under sudden change of inlet velocity in a micro combustor

Chenghua Zhang, Yunfei Yan, Kaiming Shen, Zongguo Xue, Jingxiang You, Yonghong Wu, Ziqiang He

Summary: This paper reports a novel method that significantly improves combustion performance, including heat transfer enhancement under steady-state conditions and adaptive stable flame regulation under velocity sudden increase.

JOURNAL OF CLEANER PRODUCTION (2024)