4.6 Article

MiR-155-5p inhibits PDK1 and promotes autophagy via the mTOR pathway in cervical cancer

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2018.04.005

Keywords

Cervical cancer; High-risk human papillomavirus; MicroRNA; Pyruvate dehydrogenase kinase 1

Funding

  1. Central Laboratory Youth Fund of the Second Hospital of Tianjin Medical University [2016ydey09]

Ask authors/readers for more resources

Cervical cancer is one of the most common malignant tumors and the leading cause of cancer-related mortality in women. Persistent cervical infection by high-risk human papillomavirus (hrHPV) is related to cervical cancer. MicroRNAs could regulate autophagy caused by viral infection. The aim of the present study was to investigate the regulation of autophagy by miR-155-5p in cervical cancer. In HPV+ human cervical lesion tissues, miR-1555p expression was found to be markedly decreased. Compared to C33A cancer cells (HPV-), the miR-155-5p expression was significantly lower in Siha and HeLa cells (HPV+), which are both hrHPV positive. The level of autophagy was higher in C33A cells than in Siha and HeLa cells. In addition, in C33A, Siha and HeLa cervical cancer cells, miR-155-5p overexpression promoted autophagy, whereas miR-155-5p downregulation had the opposite effects. Furthermore, miR-155-5p downregulation suppressed LC3 and promoted P62 protein expression in C33A cells through promoting the PDK1/mTOR pathway, whereas miR-155-5p overexpression recovered LC3 and suppressed P62 protein expression by suppressing PDK1/mTOR signaling. Taken together, our results indicate the importance of miR-155-5p in cervical cancer cells and suggest a novel mechanism of hrHPV in promoting cervical lesions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemistry & Molecular Biology

CENPL accelerates cell proliferation, cell cycle, apoptosis, and glycolysis via the MEK1/2-ERK1/2 pathway in hepatocellular carcinoma

Kun He, Mengyi Xie, Weifeng Hong, Yonghe Li, Yaolin Yin, Xiaojin Gao, Yi He, Yu Chen, Chuan You, Jingdong Li

Summary: Centromere protein L (CENPL) is overexpressed in hepatocellular carcinoma (HCC) and is associated with poor patient prognosis. Upregulation of CENPL promotes tumor proliferation and glycolysis in HCC cells by activating the MEK1/2-ERK1/2 signaling pathway.

INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY (2024)

Article Biochemistry & Molecular Biology

Talin mechanotransduction in disease

Yingzi Wang, Haozhong Huang, Huimin Weng, Chunsen Jia, Bin Liao, Yang Long, Fengxu Yu, Yongmei Nie

Summary: Talin protein plays a crucial role in transmitting mechanical forces by connecting the extracellular matrix to the cytoskeleton. It converts mechanical signals into biochemical signals and serves as diagnostic, therapeutic, and prognostic indicators in diseases.

INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY (2024)

Review Biochemistry & Molecular Biology

ER-mitochondria contact sites in mitochondrial DNA dynamics, maintenance, and distribution

Hema Saranya Ilamathi, Marc Germain

Summary: Mitochondria are the central metabolic hubs in cells, relying on proteins encoded by nuclear DNA and mitochondrial DNA (mtDNA) for their function. The maintenance and distribution of mtDNA are crucial for proper mitochondrial function and are associated with mitochondrial diseases. mtDNA is organized into nucleoids that dynamically move and interact with each other. The replication and distribution of mtDNA nucleoids are regulated by the complex interplay of mitochondrial dynamics, ER-mitochondria contact sites, and cytoskeletal networks.

INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY (2024)

Article Biochemistry & Molecular Biology

Tumor protein D52 (isoform 3) induces NF-κB-STAT3 mediated EMT driving neuroendocrine differentiation of prostate cancer cells

K. K. Sruthi, Sirisha Natani, Ramesh Ummanni

Summary: The overexpression of TPD52 is associated with the emergence of neuroendocrine prostate cancer (NEPC). TPD52 activates the NF-kappa B - STAT3 axis to induce neuroendocrine differentiation (NED) of prostate cancer cells. Therapeutic targeting of TPD52 is important for the treatment of prostate cancer.

INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY (2024)

Article Biochemistry & Molecular Biology

Tumor-derived microparticles promoted M2-like macrophages polarization to stimulate osteosarcoma progression

Cui Li, Feifan Xiang, Yuqi Gong, Yi Fu, Ge Chen, Zhi Wang, Zhong Li, Daiqing Wei

Summary: Our study demonstrates the significant role of tumor-derived microparticles (T-MPs) in osteosarcoma metastasis and immune response. T-MPs promote macrophage polarization and stimulate migration and chemoresistance of osteosarcoma cells, thereby affecting the progression of osteosarcoma.

INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY (2024)