4.7 Article

Chlorate brines on Mars: Implications for the occurrence of liquid water and deliquescence

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 497, Issue -, Pages 161-168

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2018.06.011

Keywords

chlorate salts; water activity; isopiestic; Mars; liquid water; deliquescence

Funding

  1. NASA Habitable Worlds grant [NNX15AP19G]
  2. NASA [NNX15AP19G, 799694] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Oxychlorine salts (chlorates and perchlorates) are globally important components of surface soils on Mars, and could form liquid water in concentrated salt solutions despite prevailing cold and dry conditions. Although perchlorate salts are well-characterized, basic thermodynamic properties of chlorate solutions, such as water activity (a(w)) and even solubility, are poorly known. To address this knowledge-gap, we measured water activities and solubilities in the Na-Ca-Mg-ClO3 system at 25 degrees C using the isopiestic method, and fit the data to an aqueous ion-interaction Pitzer model. We find that chlorate solutions have extremely low water activities that could allow liquid water to form on the surface of Mars. Compared to perchlorates, chlorates generally have higher water activities at the same concentration; however, saturated Mg(ClO3)(2) solutions, in particular, are extremely concentrated (7.59 mol kg(-1)) and have a(w) = 0.2 at 25 degrees C, substantially below saturated Mg(ClO4)(2) solutions (a(w) = 0.4). If Mg(ClO3)(2) salts are present on Mars' surface, then our results suggest a much greater potential for liquid water formation in soils due to freezing point depression or deliquescence than with perchlorates. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available