4.7 Article

FAK and BMP-9 synergistically trigger osteogenic differentiation and bone formation of adipose derived stem cells through enhancing Wnt-β-catenin signaling

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 105, Issue -, Pages 753-757

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2018.04.185

Keywords

FAK; BMP-9; Osteogenesis; Wnt; beta-catenin; Stem cell

Funding

  1. Regional Science Fund of National Natural Science Fund [81660367]

Ask authors/readers for more resources

Backgrounds: Adipose derived stem cells (ADSCs) could undergo osteogenesis via focal adhesion kinase (FAK) and bone morphogenetic protein (BMP) 9 signals, both of which could affect Wnt-beta-catenin signal, a signal pathway closely related to ADSCs osteogenesis. It's still enigma whether FAK and BMP-9 contribute to osteogenesis. Here, we examined the effect of FAK on BMP9-inducedosteogenic differentiation, unveiled the possible molecular mechanism underling this process. Methods: In the present study, ADSCs were isolated and purified, and cells of passage 3 underwent virus mediated transfection to prepare ADSCs with stable FAK shRNA expression. Cell viability and migration were detected by MTT and transwell assay, respectively. Expression of osteogenic gene, phosphorylation of FAK and GSK were detected by western blot. Osteogenic potential was evaluated by activity of alkaline phosphatase (ALP) and calcium deposition by ALP staining and Alizarin Red S staining. Results: BMP-9 administration promoted ADSCs osteogenesis. Knocking down FAK attenuated this process, inhibited osteogenic proteins expression through Wnt-beta-catenin signal. BMP-9 also triggered ADSCs proliferation and migration, and shFAK antagonized such effects too. Although Wnt signal is affected by FAK shRNA, Smad signal remains intact in ADSCs with shFAK. Conclusion: FAK and BMP-9 could cross talk on Wnt signal pathway and promote ADSCs osteogenesis. FAK could participate in BMP-9 induced ADSCs osteogenesis via Wnt signal pathway other than Smads signals (see in graph).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Review Medicine, Research & Experimental

Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells

Weizhuo Lu, Zhiwu Chen, Jiyue Wen

Summary: Ischemic stroke is a common and serious disease, and neuroinflammation plays a crucial role in its progression. Microglia, astrocytes, and infiltrating immune cells are involved in the complicated neuroinflammation cascade, releasing different molecules that affect inflammation. Flavonoids, plant-specific compounds, have shown protective effects against cerebral ischemia injury by modulating the inflammatory responses.

BIOMEDICINE & PHARMACOTHERAPY (2024)