4.7 Article

Efficient removal of atrazine from aqueous solutions using magnetic Saccharomyces cerevisiae bionanomaterial

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 102, Issue 17, Pages 7597-7610

Publisher

SPRINGER
DOI: 10.1007/s00253-018-9143-x

Keywords

Atrazine; Biodegradation; Bionanomaterial; Intermediates; Magnetic; Pathway

Funding

  1. International SAMP
  2. T Cooperation Program of China [2015DFG92750]
  3. National Natural Science Foundation of China [51478172, 51278464, 51521006]

Ask authors/readers for more resources

A novel bionanomaterial comprising Saccharomyces cerevisiae (S. cerevisiae) and Fe3O4 nanoparticles encapsulated in a sodium alginate-polyvinyl alcohol (SA-PVA) matrix was synthesized for the efficient removal of atrazine from aqueous solutions. The effects of the operating parameters, nitrogen source, and glucose and Fe3+ contents on atrazine removal were investigated, and the intermediates were detected by gas chromatography-mass spectrometry (GC-MS). In addition, the synthesized Fe3O4 particles were characterized by XRD, EDX, HR-TEM, FTIR, and hysteresis loops, and the bionanomaterial was characterized by SEM. The results showed that the maximum removal efficiency of 100% was achieved at 28 A degrees C, a pH of 7.0, and 150 rpm with an initial atrazine concentration of 2.0 mg L-1 and that the removal efficiency was still higher than 95.53% even when the initial atrazine concentration was 50 mg L-1. Biodegradation was demonstrated to be the dominant removal mechanism for atrazine because atrazine was consumed as the sole carbon source for S. cerevisiae. The results of GC-MS showed that dechlorination, dealkylation, deamination, isomerization, and mineralization occurred in the process of atrazine degradation, and thus, a new degradation pathway was proposed. These results indicated that this bionanomaterial has great potential for the bioremediation of atrazine-contaminated water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available