4.7 Article

Microbial and genomic characterization of Geobacillus thermodenitrificans OS27, a marine thermophile that degrades diverse raw seaweeds

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 102, Issue 11, Pages 4901-4913

Publisher

SPRINGER
DOI: 10.1007/s00253-018-8958-9

Keywords

Degradation; Genome; Geobacillus thermodenitrificans; Macroalga; Seaweed; Thermophile

Funding

  1. JSPS KAKENHI [25450105]

Ask authors/readers for more resources

Seaweeds are a nonlignocellulosic biomass, but they are often abundant in unique polysaccharides that common microbes can hardly utilize; therefore, polysaccharide degradation is key for the full utilization of seaweed biomass. Here, we isolated 13 thermophiles from seaweed homogenates that had been incubated at high temperature. All of the isolates were Gram-positive and preferentially grew at 60-70 degrees C. Most formed endospores and were tolerant to seawater salinity. Despite different sources, all isolates were identical regarding 16S rRNA gene sequences and were categorized as Geobacillus thermodenitrificans. Their growth occurred on seaweed polysaccharides with different profiles but required amino acids and/or vitamins, implying that they existed as proliferative cells by utilizing nutrients on seaweed viscous surfaces. Among 13 isolates, strain OS27 was further characterized to show that it can utilize a diverse range of seaweed polysaccharides and hemicelluloses. Notably, strain OS27 degraded raw seaweeds while releasing soluble saccharides. The degradation seemed to depend on enzymes that were extracellularly produced in an inducible manner. The strain could be genetically modified to produce heterologous endoglucanase, providing a transformant that degrades more diverse seaweeds with higher efficiency. The draft sequences of the OS27 genome contained 3766 coding sequences, which included intact genes for 28 glycoside hydrolases and many hypothetical proteins unusual among G. thermodenitrificans. These results suggest that G. thermodenitrificans OS27 serves as a genetic resource for thermostable enzymes to degrade seaweeds and potentially as a microbial platform for high temperature seaweed biorefinery via genetic modification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available