4.6 Article

Design of Pd@Graphene oxide framework nanocatalyst with improved activity and recyclability in Suzuki-Miyaura cross-coupling reaction

Journal

APPLIED CATALYSIS A-GENERAL
Volume 549, Issue -, Pages 60-67

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcata.2017.09.026

Keywords

Graphene oxide framework; Pore encapsulation; Palladium nanocatalysts; Suzuki-Miyaura cross-coupling

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan

Ask authors/readers for more resources

We describe a new method to synthesize a catalyst comprising of Pd nanoparticles encapsulated in a graphene oxide framework (Pd@GOF). GO was first intercalated with benzene-1,4-diboronic acid to afford a three-dimensional (3D) framework with uniform interlayer spaces, in which Pd nanoparticles were generated through salt reduction. Thus formed Pd nanoparticles were highly dispersed and stabilized inside a graphitic gallery space with a narrow particle size distribution. Thus obtained Pd@GOF catalyst exhibited an outperforming activity toward the Suzuki-Miyaura cross-coupling reaction in both polar and apolar solvents. Moreover, it can be reused for at least five cycles without any significant loss of the activity, while commercial Pd/C and Pd/GO exhibited a clear drop in the activity. These findings would establish the GOF as a promising scaffold to host noble metal nanoparticles and to construct desired metal@GOF nanocatalysts with improved activity and durability, which must be attractive for a broad range of practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method

Nhan Nu Thanh Ton, Anh Thi Ngoc Dao, Koichiro Kato, Takuma Ikenaga, Dai Xuan Trinh, Toshiaki Taniike

CARBON (2018)

Article Chemistry, Multidisciplinary

Influence of Hydrolysis Susceptibility and Hydrophobicity of SN-38 Nano-Prodrugs on Their Anticancer Activity

Yoshitaka Koseki, Yoshikazu Ikuta, Liman Cong, Mayumi Takano-Kasuya, Hiroshi Tada, Mika Watanabe, Kohsuke Gonda, Takanori Ishida, Noriaki Ohuchi, Keita Tanita, Farsai Taemaitree, Anh Thi Ngoc Dao, Tsunenobu Onodera, Hidetoshi Oikawa, Hitoshi Kasai

BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN (2019)

Article Chemistry, Multidisciplinary

Self-assemble tannic acid and iron complexes on pure nanodrugs surface prevents aggregation and enhances anticancer drug delivery efficiency

Farsai Taemaitree, Yoshitaka Koseki, Nozomi Saito, Ryuju Suzuki, Anh Thi Ngoc Dao, Hitoshi Kasai

MOLECULAR CRYSTALS AND LIQUID CRYSTALS (2020)

Article Chemistry, Multidisciplinary

Serum Albumin-treated SN-38 Prodrug Nanoparticles toward Cancer Treatment

Farsai Taemaitree, Yoshitaka Koseki, Anh Thi Ngoc Dao, Hitoshi Kasai

Summary: Carrier-free drug nanoparticles are being improved with the use of serum albumin protein, which prevents aggregation and maintains stability in physiological environments, thereby enhancing their anticancer efficiency.

CHEMISTRY LETTERS (2021)

Article Chemistry, Analytical

Investigation into the Adsorption of Methylene Blue and Methyl Orange by UiO-66-NO2 Nanoparticles

Hien Thi Dinh, Nam Trung Tran, Dai Xuan Trinh

Summary: In this study, the adsorptive removal of methylene blue and methyl orange by UiO-66-NO2 nanoparticles was investigated. The adsorption capacity of methyl orange on the nanoparticles was over three times higher than that of methylene blue, attributed to the presence of the -NO2 functional group causing a strong negative mesomeric effect in the metal-organic framework structure.

JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY (2021)

Article Biochemistry & Molecular Biology

Preparation and Desalination Performance of PA/UiO-66/PES Composite Membranes

Dai Xuan Trinh, Ngo Nghia Pham, Patchanee Chammingkwan, Toshiaki Taniike

Summary: UiO-66 nanoparticles anchored to PES membranes showed superior desalination performance compared to blank membranes and ZrO2 reference membranes. The hydrophilicity of UiO-66 nanoparticles and the presence of nanochannels in their structure may contribute to this enhanced performance.

MEMBRANES (2021)

Article Nanoscience & Nanotechnology

Gold-Photodeposited Silver Nanowire Endoscopy for Cytosolic and Nuclear pH Sensing

Qiang Zhang, Tomoko Inose, Monica Ricci, Jiangtao Li, Ya Tian, Han Wen, Shuichi Toyouchi, Eduard Fron, Anh Thi Ngoc Dao, Hitoshi Kasai, Susana Rocha, Kenji Hirai, Beatrice Fortuni, Hiroshi Uji-I

Summary: Gold-deposited silver nanowire endoscopy is a promising tool for studying pH variations in cells, with high spatiotemporal resolution and sensitivity, by accurately detecting specific pH changes in response to different treatments.

ACS APPLIED NANO MATERIALS (2021)

Article Chemistry, Multidisciplinary

Formation of multishell Au@Ag@Pt nanoparticles by coreduction method: a microscopic study

Y. Takeuchi, H. -J. Lee, A. T. N. Dao, H. Kasai, R. Teranishi, K. Kaneko

Summary: The study synthesized metallic nanoparticles of Ag-Pt double-shell on Au-core with a hollow-granular shell structure by a coreduction method. The nanostructures were examined in detail at different reduction reaction periods, revealing the competitive role of each reduction reaction and the successful increase in Pt surface area. The coreduction method contributed to enhancing the catalytic applications of the nanoparticles.

MATERIALS TODAY CHEMISTRY (2021)

Article Crystallography

Fabrication of size-controlled SN-38 pure drug nanocrystals through an ultrasound-assisted reprecipitation method toward efficient drug delivery for cancer treatment

Yoshitaka Koseki, Yoshikazu Ikuta, Farsai Taemaitree, Nozomi Saito, Ryuju Suzuki, Anh Thi Ngoc Dao, Tsunenobu Onodera, Hidetoshi Oikawa, Hitoshi Kasai

Summary: The study fabricated pure drug nanocrystals using the ultrasound-assisted reprecipitation method, showing higher cytostatic activity against cancer cells, demonstrating the potential of fabricating carrier-free drug nanoparticles.

JOURNAL OF CRYSTAL GROWTH (2021)

Article Nanoscience & Nanotechnology

Low-Cytotoxic Gold-Coated Silver Nanoflowers for Intracellular pH Sensing

Qiang Zhang, Han Wen, Kiri Watanabe, Ibuki Kotani, Monica Ricci, Beatrice Fortuni, Anh Thi Ngoc Dao, Akito Masuhara, Kenji Hirai, Hitoshi Kasai, Tomoko Inose, Hiroshi Uji-i

ACS APPLIED NANO MATERIALS (2020)

Meeting Abstract Chemistry, Multidisciplinary

Facile preparation of Au/Silk nanoparticles as a multifunctional drug delivery system

Anh Dao, Hitoshi Kasai

ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Biochemistry & Molecular Biology

Design of a Semi-Continuous Selective Layer Based on Deposition of UiO-66 Nanoparticles for Nanofiltration

Goji Y. Shangkum, Patchanee Chammingkwan, Dai X. Trinh, Toshiaki Taniike

MEMBRANES (2018)

Article Chemistry, Physical

Enhancing oxygen reduction reaction with Pt-decorated Cu@Pd and high-entropy alloy catalysts: Insights from first-principles analysis of Pt arrangement

Ming-Yi Chen, Ngoc Thanh Thuy Tran, Ahmed Abubakar Alao, Wen-Dung Hsu

Summary: This study demonstrates the significance of surface Pt atom arrangement for the efficiency of ORR in PEMFCs and reveals the correlation between Pt-Pt average distance and O2 dissociation barrier. Furthermore, the study discovers a robust correlation between the level of the catalyst's d-band center and O2 adsorption energy. High-entropy alloy substrates provide potential for controlling Pt arrangement and O2 dissociation barrier.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

MOF-catalyzed hydroxyalkylation-alkylation reaction for the controlled synthesis of furan oligomers

Eduardo C. Atayde Jr, Babasaheb M. Matsagar, Yu-Cheng Wang, Kevin C. -W. Wu

Summary: This study presents the first application of an acidic MOF, Sulfated MOF-808, in catalyzing the HAA reactions of furan oligomers for the production of biofuel precursors. The catalyst showed high yield, selectivity, and recyclability, making it versatile for different starting materials.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Dehydrogenation of ethylbenzene to styrene over magnesium-doped hematite catalysts

Maria do Carmo Rangel, Francieli Martins Mayer, Soraia Jesus de Oliveira, Sergio Gustavo Marchetti, Fabricio Luiz Faita, Doris Ruiz, Giovanni Saboia, Mariana Kieling Dagostini, Jonder Morais, Maria do Carmo Martins Alves

Summary: This study developed a new catalyst by investigating the effect of magnesium on the catalytic properties of hematite in ethylbenzene dehydrogenation. The catalyst showed important differences in activity, selectivity, and stability, making it a promising candidate for commercial applications.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective oxidation of methacrolein to methacrylic acid over CsH3PMo11VO40 with structural defects

Yanjun Li, Qian Wang, Hui Tian, Mingyuan Zhu, Yuanyuan Liu

Summary: A novel strategy using microwave-assisted precipitation was proposed to prepare defective CsH3PMo11VO40 catalyst for the oxidation of methacrolein to methacrylic acid. Microwave treatment accelerates crystallization, increases vanadyl species content, and forms defective Keggin structures, thereby enhancing the oxidation capacity of the catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Novel acidic ionic liquid [BEMIM][HSO4]: A highly efficient and recyclable catalyst for the synthesis of bis-indolyl methane derivatives

Rajeshwari Athavale, Sailee Gardi, Fatima Choudhary, Dayanand Patil, Nandkishor Chandan, Paresh More

Summary: In this study, a novel acidic ionic liquid catalyst was prepared and used for the synthesis of bis-indolyl methane derivatives. The catalyst exhibited short reaction times, easy purification, and reusability.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

The chemical state and Cu plus stability for three-way catalytic performance of Cu-added Al2O3 catalysts

Masatomo Hattori, Takato Hattori, Masakuni Ozawa

Summary: Cu-added gamma-Al2O3 catalysts were prepared with varying Cu loadings and the effects of copper oxidation states on catalytic activity were investigated. The results showed that the addition of copper increased the catalyst activity, but excessive copper loading decreased catalytic activity. XRD and TEM analysis indicated the formation of a solid solution of copper oxide species on the surface of gamma-Al2O3. XAS and TPR data demonstrated variations in copper oxidation states among the catalysts.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Enhanced oxygen reduction catalytic performance of PtNi alloy through modulating metal-support interaction

Liwei Fang, Shiyang Niu, Shengsen Wang, Yiqing Lu, Yuanhui Cheng

Summary: In this study, PtNi alloy on nitrogen-doped carbon and SnO2 dual-support was designed to modulate the metal-support interaction, resulting in improved catalytic activity and stability for oxygen reduction reaction. The SnO2/PtNi/NC catalyst exhibited a strongly coupled interface, enhanced electron transfer, and higher half-wave potential compared to PtNi/NC and commercial Pt/C.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective hydrogenation of carbon dioxide to light hydrocarbons over ZnZrOX/H-MFI composite catalyst with long-term stability

Shohei Harada, Duanxing Li, Kenta Iyoki, Masaru Ogura

Summary: This study investigates the catalytic performance of a composite catalyst composed of ZnZrOX and H-zeolite for the hydrogenation of CO2. The deactivation of the composite catalyst is influenced by ion exchange of Zn2+ and/or coke, with their effects differing based on the zeolite structure. Separating the grains of the composite catalyst can prevent deactivation.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

CO2 hydrogenation to methanol over ceria-zirconia NiGa alloy catalysts

Laura Proano, Christopher W. Jones

Summary: In this study, NiGa alloy particles supported on CeO2, ZrO2, and ZrO2-CeO2 solid solutions were prepared and characterized. The nature of the support was found to have a significant influence on the catalyst's activity and selectivity, with the crystalline structure of ZrO2 having the greatest impact. Pure ZrO2 showed the highest methanol selectivity and CO2 conversion at high Zr:Ce ratios. In equimolar and Ce-rich conditions, basic sites and oxygen vacancies were found to be the key parameters affecting methanol production.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Reductive amination of 1,6-hexanediol with a modified Ru/Al2O3 catalyst

Liyan Zhang, Yinze Yang, Leilei Zhou, Fengyu Zhao, Haiyang Cheng

Summary: 1,6-Hexamethylenediamine was successfully synthesized via the reductive amination of 1,6-hexanediol using a Ru/PRL(x)-Al2O3 catalyst. The highly dispersed and anchored Ru species, formed by 1,10-phenanthroline (PRL), played a crucial role in the catalytic reaction. The formation of new acid-base pairs, electron deficient Ru species, and smaller nanoparticles contributed to the improved catalytic performances of the Ru/PRL-Al2O3 catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Longevity increase of an impregnated Ni/CeO2-Al2O3 dry reforming catalyst by indium

Anita Horvath, Miklos Nemeth, Andrea Beck, Gyorgy Safran, Valeria La Parola, Leonarda Francesca Liotta, Gregor Zerjav, Matevz Roskaric, Albin Pintar

Summary: This study investigates the catalytic and structural changes caused by the addition of 0.25 wt% indium in a 3% Ni/CeO2-Al2O3 catalyst prepared by impregnation method. The results show that the addition of indium can decrease the activity of the catalyst, but it improves its stability and reduces coking.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Harnessing reactive hydrogen species via H2O2 photolysis for reduction of CO2 to CH3OH using CaIn2S4@ZnMOF photocatalyst

Ankush Kularkar, Vaibhav Vilas Khedekar, Sachin D. Chaudhari, Mudavath Ravi, Sadhana S. Rayalu, Penumaka Nagababu

Summary: Efficiently addressing the challenges of photocatalytic CO2 reduction to CH3OH is crucial. This study developed Zn-BTC MOF and its composites with CaIn2S4, achieving highly efficient and robust photocatalytic CO2 reduction to CH3OH under ambient conditions, using H2O2 as the hydrogen source. Among the composites, ZMCIS4 demonstrated excellent performance with a CH3OH evolution of 49100 μmol/g.cat and a quantum efficiency of approximately 78.41%. The enhanced performance was attributed to the production of nascent hydrogen atoms (H center dot) through the photo-splitting of H2O2 on the ZMCIS surface.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Numerous active sites in self-supporting Co3O4 nanobelt array for boosted and stabilized 5-hydroxymethylfurfural electro-oxidation

Dan Liu, Yudong Li, Chengyu Wang, Haiyue Yang, Rong Wang, Shujun Li, Xiaohui Yang

Summary: In this study, a self-supporting three-dimensional porous Co3O4 nanobelt array decorated on nickel foam (P-Co3O4 -NBA@NF) electrode with numerous active sites was successfully constructed for the oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA). The P-Co3O4 -NBA@NF electrode demonstrated high conversion efficiency, selectivity, and Faraday efficiency, as well as remarkable long-term stability. This research provides a promising electrocatalyst for biomass conversion.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Amorphous silica-alumina modified with silver as an efficient catalyst for vapor-phase dehydration of 1,3-butanediol to 1,3-butadiene

Yimin Li, Enggah Kurniawan, Fumiya Sato, Takayoshi Hara, Yasuhiro Yamada, Satoshi Sato

Summary: In this study, several silica-alumina catalysts modified with Ag were examined for the dehydration of 1,3-butanediol to 1,3-butadiene. Among them, an amorphous silica-alumina catalyst (SAL-3) modified with Ag showed the highest improvement in catalytic activity and stability when operated in H2 flow. The generation of reversible acid sites was found to be the reason behind the enhanced activity and stability of this Ag/SAL-3 catalyst. The effects of various parameters on the catalytic activity of Ag/SAL-3, such as reaction temperature, contact time, Ag content, and carrier gas, were investigated.

APPLIED CATALYSIS A-GENERAL (2024)