4.7 Article

A redox-switchable ring-closing metathesis catalyst

Journal

INORGANIC CHEMISTRY FRONTIERS
Volume 4, Issue 9, Pages 1525-1532

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7qi00018a

Keywords

-

Funding

  1. Office of Naval Research [N00014-14-1-0650]
  2. Institute for Basic Science [IBS-R019-D1]
  3. Ministry of Education
  4. National Research Foundation of Korea
  5. National Science Foundation

Ask authors/readers for more resources

A Ru(II) complex ligated to a quinone-annulated N-heterocyclic carbene (NHC) was synthesized as a redox-active analogue of the Hoveyda-Grubbs II generation catalyst. The complex exhibited a single reversible reduction with a E-1/2 of -0.63 V (vs. SCE), and was successfully reduced and then oxidized with high fidelity using chemical reagents. While the catalyst facilitated a range of ring-closing metathesis (RCM) reactions in its neutral state, its activity was inhibited upon the introduction of a suitable reducing reagent. A series of density functional theory calculations revealed that the differences in catalytic activity may be attributed to the stronger donating ability of the reduced NHC ligand which stabilized a ruthenacyclobutane intermediate and thus suppressed the rate-determining retro-[2 + 2] cycloaddition step of the underlying RCM mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Copper Hydride-Catalyzed Enantioselective Olefin Hydromethylation

Yuyang Dong, Kwangmin Shin, Binh Khanh Mai, Peng Liu, Stephen L. Buchwald

Summary: This paper reports an asymmetric olefin hydromethylation protocol enabled by CuH catalysis, in which methyl tosylate is used as a methyl source and iodide ion converts it into the active reactant methyl iodide. The method demonstrates broad applicability and tolerance.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Physical

A Combined DFT, Energy Decomposition, and Data Analysis Approach to Investigate the Relationship Between Noncovalent Interactions and Selectivity in a Flexible DABCOnium/Chiral Anion Catalyst System

Edward Miller, Binh Khanh Mai, Jacquelyne A. Read, William C. Bell, Jeffrey S. Derrick, Peng Liu, F. Dean Toste

Summary: Developing strategies to study reactivity and selectivity in flexible catalyst systems has become an important topic of research. In this study, a combined experimental and computational approach was used to investigate the mechanistic role of an achiral DABCOnium cofactor in a regio- and enantiodivergent bromocyclization reaction. It was found that electron-deficient aryl substituents resulted in rigidified transition states, driving the selectivity of the reaction, while electron-rich aryl groups led to more flexible transition states, where interactions between the catalyst and substrate were more important.

ACS CATALYSIS (2022)

Article Chemistry, Multidisciplinary

Designed Iron Catalysts for Allylic C-H Functionalization of Propylene and Simple Olefins

Ruihan Wang, Yidong Wang, Ruiqi Ding, Parker B. Staub, Christopher Z. Zhao, Peng Liu, Yi-Ming Wang

Summary: A newly-developed cationic cyclopentadienyliron dicarbonyl complex enables the conversion of propylene to its allylic C-C bond coupling products under catalytic conditions. This approach is also applicable to the allylic functionalization of simple alpha-olefins with distinctive branched selectivity. Experimental and computational studies reveal the allylic deprotonation of the metal-coordinated alkene as the turnover-limiting step and provide insights into the multifaceted roles of the newly designed ligand in promoting allylic C-H functionalization with enhanced reactivity and stereoselectivity.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Catalytic Cross-Metathesis Reactions That Afford E- and Z-Trisubstituted Alkenyl Bromides: Scope, Applications, and Mechanistic Insights

Tobias Koengeter, Can Qin, Binh Khanh Mai, Qinghe Liu, Yucheng Mu, Peng Liu, Amir H. Hoveyda

Summary: This paper presents a stereoretentive strategy for catalytic cross-metathesis reaction between tri-, Z- or E-di, or monosubstituted olefins and Z- or E-2-bromo-2-butene, leading to the formation of various trisubstituted alkenyl bromides. The method is applicable for the generation of products containing polar moieties or sterically hindered alkenes.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Enantioselective Hydroalkenylation and Hydroalkynylation of Alkenes Enabled by a Transient Directing Group: Catalyst Generality through Rigidification

Amit Kumar Simlandy, Turki M. Alturaifi, Johny M. Nguyen, Lucas J. Oxtoby, Quynh Nguyen Wong, Jason S. Chen, Peng Liu, Keary M. Engle

Summary: We report a transient directing group (TDG) strategy for site-selective palladium-catalyzed reductive Heck-type hydroalkenylation and hydroalkynylation of alkenylaldehydes using alkenyl and alkynyl bromides. This strategy allows for the construction of a stereocenter at the delta-position with respect to the aldehyde. Computational studies reveal the beneficial roles of rigid TDGs, such as L-tert-leucine, in promoting TDG binding and inducing high levels of enantioselectivity in alkene insertion.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Redox-Paired Alkene Difunctionalization Enables Skeletally Divergent Synthesis

Hui-Qi Ni, Malkanthi K. Karunananda, Tian Zeng, Shenghua Yang, Zhen Liu, K. N. Houk, Peng Liu, Keary M. Engle

Summary: Multistep organic synthesis allows the conversion of simple chemical feedstocks into more complex products with specific functions. This study introduces a novel approach to organic reactions that can generate multiple valuable products with different carbon skeletons in a single operation. Through a palladium-catalyzed reaction, a single alkene starting material can be converted into two structurally distinct products, demonstrating the potential for simultaneous access to diverse compounds. The findings of this study provide insights into the mechanistic details of this unique catalytic system and establish a new method for small-molecule library synthesis.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Escape from Palladium: Nickel-Catalyzed Catellani Annulation

Jingfeng Huo, Yue Fu, Melody J. Tang, Peng Liu, Guangbin Dong

Summary: In this research, the first nickel-catalyzed Catellani-type annulation of aryl triflates and chlorides was achieved to form various benzocyclobutene-fused norbornanes in high efficiency. Mechanistic studies revealed an unexpected outer-sphere concerted metalation/deprotonation pathway and the essential roles of the base and the triflate anion. Compared to palladium catalysis, the reaction showed a broad functional group tolerance and enhanced regioselectivity.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Intramolecular Hydrogen Bonding Enables a Zwitterionic Mechanism for Macrocyclic Peptide Formation: Computational Mechanistic Studies of CyClick Chemistry

Huiling Shao, Victor Adebomi, Angele Bruce, Monika Raj, Kendall N. Houk

Summary: This study involves a computational investigation of CyClick chemistry, a reaction that selectively forms cyclic peptides from linear peptide aldehydes without the use of catalysts or directing groups. The research explores the role of intramolecular hydrogen bonds (IMHBs) in promoting the reaction mechanism and highlights the importance of IMHBs in stabilizing intermediate states and controlling product stereoselectivity. The study also examines the effect of ring strain energy on the reaction, finding that low ring strain energy promotes the formation of more stable cyclic peptides.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Dynamic Kinetic Stereoselective Glycosylation via Rh-II and Chiral Phosphoric Acid-Cocatalyzed Carbenoid Insertion to the Anomeric OH Bond for the Synthesis of Glycoconjugates

Jicheng Wu, Peijing Jia, Rositha Kuniyil, Peng Liu, Weiping Tang

Summary: In this study, we report an efficient method for the stereoselective synthesis of challenging α-linked glycoconjugates using a Rh-II/chiral phosphoric acid (CPA)-cocatalyzed dynamic kinetic anomeric O-alkylation. By exploring various parameters of the cocatalytic system, we achieved excellent anomeric selectivity, excellent diastereoselectivity, broad substrate scope, and high efficiency for this glycosylation reaction. DFT calculations suggested that the anomeric selectivity was determined by steric interactions between the C2-carbon of the carbohydrate and the phenyl group of the metal carbenoid, while diastereoselectivity at the newly generated stereogenic center was influenced by π-π interactions with the C2-OBn substituent on the carbohydrate substrate.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Stereoselective Synthesis of Trisubstituted Alkenes via Copper Hydride-Catalyzed Alkyne Hydroalkylation

Dennis A. Kutateladze, Binh Khanh Mai, Yuyang Dong, Yu Zhang, Peng Liu, Stephen L. Buchwald

Summary: A copper hydride-catalyzed approach has been developed for the synthesis of Z-configured trisubstituted alkenes with high stereo- and regioselectivity. This method provides a valuable strategy for accessing challenging classes of alkenes.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Catalytic Asymmetric Hydrogen Atom Transfer: Enantioselective Hydroamination of Alkenes

Benjamin G. Hejna, Jacob M. Ganley, Huiling Shao, Haowen Tian, Jonathan D. Ellefsen, Nicholas J. Fastuca, Kendall N. Houk, Scott J. Miller, Robert R. Knowles

Summary: We present a highly enantioselective radical-based hydroamination of enol esters with sulfonamides using an Ir photocatalyst, Bronsted base, and tetrapeptide thiol. The reaction produces 23 protected β-amino-alcohol products with selectivities up to 97:3 er. Experimental and computational studies reveal that hydrogen bonding, π-π stacking, and London dispersion interactions play important roles in substrate recognition and enantioinduction.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Multidisciplinary Sciences

Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis

Lei Cheng, Dian Li, Binh Khanh Mai, Zhiyu Bo, Lida Cheng, Peng Liu, Yang Yang

Summary: The merger of photoredox catalysis and PLP biocatalysis enables the development of a new synthetic method for preparing valuable noncanonical amino acids, allowing controlled formation of chiral products.

SCIENCE (2023)

Article Multidisciplinary Sciences

Dearomative ring expansion of thiophenes by bicyclobutane insertion

Huamin Wang, Huiling Shao, Ankita Das, Subhabrata Dutta, Hok Tsun Chan, Constantin Daniliuc, K. N. Houk, Frank Glorius

Summary: In this study, a photoinduced ring enlargement method of thiophenes was developed, which involves the insertion of bicyclo[1.1.0]butanes to form eight-membered bicyclic rings under mild conditions. The synthetic value, broad functional-group compatibility, and excellent chemo- and regioselectivity were demonstrated by scope evaluation and product derivatization. Experimental and computational studies suggested a photoredox-induced radical pathway.

SCIENCE (2023)

Article Chemistry, Physical

Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis

Wenzhen Fu, Natalia M. M. Neris, Yue Fu, Yunlong Zhao, Benjamin Krohn-Hansen, Peng Liu, Yang Yang

Summary: This study describes a metalloredox biocatalysis strategy to repurpose natural cytochromes P450 for catalysing asymmetric radical cyclization to arenes through an unnatural electron transfer mechanism. Directed evolution yielded a series of engineered P450 aromatic radical cyclases with complementary selectivities. The excellent tunability of this metalloenzyme family provides an exciting platform for utilizing free radical intermediates in asymmetric catalysis.

NATURE CATALYSIS (2023)

Article Chemistry, Physical

Catalytic Addition of Nitroalkanes to Unactivated Alkenes via Directed Carbopalladation

Amit Kumar Simlandy, Warabhorn Rodphon, Turki M. Alturaifi, Binh Khanh Mai, Hui-Qi Ni, John A. Gurak, Peng Liu, Keary M. Engle

Summary: We report a redox-neutral catalytic coupling of nitroalkanes and unactivated alkenes that proceeds by a directed carbopalladation mechanism. The reaction is enabled by the combination of PdI2 as the precatalyst and HFIP solvent. Complex nitroalkane products, including nitro-containing carbo- and heterocycles, can be prepared under convenient conditions without the need for toxic or corrosive reagents.

ACS CATALYSIS (2022)

No Data Available