4.7 Article

Optimal Faujasite structures for post combustion CO2 capture and separation in different swing adsorption processes

Journal

JOURNAL OF CO2 UTILIZATION
Volume 19, Issue -, Pages 100-111

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jcou.2017.03.007

Keywords

Zeolite; CO2 capture; Sequestration; Molecular simulation; Swing adsorption process

Funding

  1. Spanish Ministry of Economy and Competitiveness [CTQ2014-53987-R]
  2. Generalitat de Catalunya [2014SGR1582, FI-DGR-2015]
  3. Generalitat de Catalunya

Ask authors/readers for more resources

Grand Canonical Monte-Carlo (GCMC) simulations are used in this work, to assess optimum faujasite structures, the well-known family of zeolites, in CO2 capture processes. Pressure Swing Adsorption (PSA) and Vacuum Swing Adsorption (VSA) procedures have been considered to evaluate purity, working capacity and breakthrough time. To this purpose, ten faujasite structures with different Al content were selected, and the best conditions for CO2 capture maximization have been calculated for each structure. Further results show that zeolites having intermediate Al content are the most effective for VSA processes, whereas low Al content faujasites perform better at PSA conditions. Remarkably, present work best results clearly improve Faujasite 13X VSA-PSA performances, so far considered the industrial reference in absence of water. Moreover, combined VPSA processes, in terms of working capacity and adiabatic work required for compression/expansion, have also been studied, showing that VPSA systems are more efficient than pure PSA/VSA, for structures with intermediate Al content. Finally, an improved methodology has been derived, where GCMC mixture isotherms and energetic cost calculations are combined, and a more accurate way of estimating working capacities and breakthrough times is proposed. This new approach allows more realistic evaluations of adsorbents' performances, than those found in the literature based on pure adsorption data. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available