4.6 Article

Manipulating superconductivity of 1T-TiTe2 by high pressure

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 5, Issue 17, Pages 4167-4173

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc00209b

Keywords

-

Funding

  1. National Key Research and Development Program of China [2016YFA0300404]
  2. National Nature Science Foundation of China [11674326, 11404340, 11274311, 11404342, U1232139]
  3. Youth Innovation Promotion Association of CAS [2012310]
  4. Key Research Program of Frontier Sciences of CAS [QYZDB-SSW-SLH015]
  5. Hefei Science Center of CAS [2016HSC-IU011]

Ask authors/readers for more resources

Superconductivity of transition metal dichalcogenide 1T-TiTe2 under high pressure was investigated by first-principles calculations. Our results show that the superconductivity of 1T-TiTe2 exhibits very different behavior under hydrostatic and uniaxial pressure. The hydrostatic pressure is harmful to the superconductivity, while the uniaxial pressure is beneficial to the superconductivity. The superconducting transition temperature T-C at ambient pressure is 0.73 K, and it reduces monotonously under the hydrostatic pressure to 0.32 K at 30 GPa, while TC increases dramatically under the uniaxial pressure along the c axis. The established T-C of 6.34 K under the uniaxial pressure of 17 GPa, below which the structural stability is maintained, is above the liquid helium temperature of 4.2 K. The increase of the density of states at the Fermi level, the red-shift of the phonon density of states/Eliashberg spectral function F(omega)/alpha F-2(omega), and the softening of the acoustic modes with pressure are considered as the main reasons that lead to the enhanced superconductivity under uniaxial pressure. In view of the previously predicted topological phase transitions of 1T-TiTe2 under the uniaxial pressure (Q. Zhang et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 88, 155317), we consider 1T-TiTe2 as a possible candidate in transition metal chalcogenides for exploring topological superconductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Observation and Manipulation of a Phase Separated State in a Charge Density Wave Material

Sean M. Walker, Tarun Patel, Junichi Okamoto, Deler Langenberg, E. Annelise Bergeron, Jingjing Gao, Xuan Luo, Wenjian Lu, Yuping Sun, Adam W. Tsen, Jonathan Baugh

Summary: This study investigates the properties of ultrathin 1T-TaS2 and reveals the presence of nonequilibrium phases consisting of intertwined NC-like and C-like domains. The relationship between electronic inhomogeneity and bulk resistivity in ultrathin 1T-TaS2 is also explored.

NANO LETTERS (2022)

Article Chemistry, Physical

Modulation of electronic state in copper-intercalated 1T-TaS2

Wenhao Zhang, Degong Ding, Jingjing Gao, Kunliang Bu, Zongxiu Wu, Li Wang, Fangsen Li, Wei Wang, Xuan Luo, Wenjian Lu, Chuanhong Jin, Yuping Sun, Yi Yin

Summary: Intercalation is an effective method to modify physical properties and induce novel electronic states of transition metal dichalcogenide materials. In this study, the successful synthesis of copper-intercalated 1T-TaS2 is reported, and the structural and electronic modifications are characterized using various techniques. The intercalated copper atom suppresses the commensurate charge density wave phase and two specific electronic modulations are discovered in the near-commensurate charge density wave phase.

NANO RESEARCH (2022)

Article Chemistry, Multidisciplinary

Colossal 3D Electrical Anisotropy of MoAlB Single Crystal

Yanan Huang, Jianguo Si, Shuai Lin, Hongyan Lv, Wenhai Song, Ranran Zhang, Xuan Luo, Wenjian Lu, Xuebin Zhu, Yuping Sun

Summary: This study reports the colossal 3D electrical anisotropy of layered MAB-phase MoAlB single crystal. Through experimental and theoretical investigations, it is demonstrated that the crystal structure, chemical bond, phonon vibration, and electronic structure of MoAlB result in its significant electrical conductivity anisotropy. This work provides valuable insights for the design of functional electronic devices and the synthesis of new 2D materials.

SMALL (2022)

Article Multidisciplinary Sciences

Colossal and reversible barocaloric effect in liquid-solid-transition materials n-alkanes

Jianchao Lin, Peng Tong, Kai Zhang, Kun Tao, Wenjian Lu, Xianlong Wang, Xuekai Zhang, Wenhai Song, Yuping Sun

Summary: Emerging caloric cooling technology provides a green alternative to conventional vapor-compression technology. This study reports the barocaloric effect associated with liquid-solid transition in n-alkanes, showing that applying pressure to the liquid state can induce a colossal BC effect.

NATURE COMMUNICATIONS (2022)

Correction Engineering, Electrical & Electronic

Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide (vol 5, pg 267, 2022)

Arnab Bose, Nathaniel J. Schreiber, Rakshit Jain, Ding-Fu Shao, Hari P. Nair, Jiaxin Sun, Xiyue S. Zhang, David A. Muller, Evgeny Y. Tsymbal, Darrell G. Schlom, Daniel C. Ralph

NATURE ELECTRONICS (2022)

Article Physics, Applied

Large linear magnetoresistance and nontrivial band topology in In3Rh

Linlin An, Jianguo Si, Xiangde Zhu, Chuanying Xi, Nanyang Xu, Yuanjun Yang, Lan Wang, Wei Ning, Wenjian Lu, Mingliang Tian

Summary: We report experimental studies on the angular-dependent magnetoresistance (MR) of In3Rh single crystals under high magnetic fields. The crystals exhibit large, non-saturating linear MR and remarkable quantum oscillations with multi-frequencies. Analysis of the quantum oscillations reveals the presence of three bands hosting a nontrivial Berry phase, which is supported by first-principles calculations. Our work provides a platform for exploring topological materials in indium-rich transition metal compounds.

APPLIED PHYSICS LETTERS (2023)

Article Chemistry, Physical

Ni-Intercalation-Induced Topological Nodal Line States and Superconductivity in NiTe

Xin Liang, Ding-Fu Shao, Run Lv, Rui-Chun Xiao, Hong-Yan Lv, Wen-Jian Lu, Yu-Ping Sun

Summary: Based on symmetry analyses and first-principles calculations, the predictions of topological fermions and superconductivity in Ni-intercalated transition metal chalcogenide NiTe are reported. The self-intercalation of Ni introduces nonsymmorphic symmetry operations, protecting a pair of Dirac points and three intersecting Dirac nodal lines near Fermi energy level (EF), which generate spin-textured surface states across EF. Moreover, the Ni-intercalation strongly enhances electron-phonon coupling in NiTe and makes it an anisotropic Bardeen-Cooper-Schrieffer superconductor with a full superconducting gap and a critical temperature Tc similar to 1.5 K. The coexistence of topological surface states and superconductivity implies that NiTe is a potential material platform for exploring topological superconductivity.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Multidisciplinary

Switchable Anomalous Hall Effects in Polar-Stacked 2D Antiferromagnet MnBi2Te4

Tengfei Cao, Ding-Fu Shao, Kai Huang, Gautam Gurung, Evgeny Y. Tsymbal

Summary: Based on symmetry analyses and density-functional calculations, this study explores the emergence of the anomalous Hall effect (AHE) in antiferromagnetic MnBi2Te4 films assembled by polar layer stacking. Breaking PT symmetry in an MnBi2Te4 bilayer produces a magnetoelectric effect and a spontaneous AHE switchable by electric polarization. Reversible polarization at one of the interfaces in a three-layer MnBi2Te4 film drives a metal-insulator transition, as well as switching between the AHE and quantum AHE (QAHE). Engineering interlayer polarization in a three-layer MnBi2Te4 film allows converting MnBi2Te4 from a trivial insulator to a Chern insulator.

NANO LETTERS (2023)

Article Chemistry, Physical

Observation of anti-damping spin-orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3

D. C. Mahendra, Ding-Fu Shao, Vincent D. -H. Hou, Arturas Vailionis, P. Quarterman, Ali Habiboglu, M. B. Venuti, Fen Xue, Yen-Lin Huang, Chien-Min Lee, Masashi Miura, Brian Kirby, Chong Bi, Xiang Li, Yong Deng, Shy-Jay Lin, Wilman Tsai, Serena Eley, Wei-Gang Wang, Julie A. Borchers, Evgeny Y. Tsymbal, Shan X. Wang

Summary: By utilizing unconventional spins generated in a MnPd3 thin film grown on an oxidized silicon substrate, the authors observed both conventional spin-orbit torques and unconventional out-of-plane and in-plane anti-damping-like torques in MnPd3/CoFeB heterostructures, enabling complete field-free switching of perpendicular cobalt. These unconventional torques are attributed to the low symmetry of the (114)-oriented MnPd3 films. The results provide a path towards practical spin channels in ultrafast magnetic memory and logic devices.

NATURE MATERIALS (2023)

Article Physics, Multidisciplinary

Neel Spin Currents in Antiferromagnets

Ding-Fu Shao, Yuan-Yuan Jiang, Jun Ding, Shu-Hui Zhang, Zi-An Wang, Rui-Chun Xiao, Gautam Gurung, W. J. Lu, Y. P. Sun, Evgeny Y. Tsymbal

Summary: It is demonstrated that fully compensated antiferromagnets can support Néel spin currents, which can be used to drive spin-dependent transport phenomena in antiferromagnetic tunnel junctions (AFMTJs). The study uncovers the potential of fully compensated antiferromagnets and opens a new route for efficient information writing and reading in antiferromagnetic spintronics.

PHYSICAL REVIEW LETTERS (2023)

Article Materials Science, Multidisciplinary

Stabilizing polar phases in binary metal oxides by hole doping

Tengfei Cao, Guodong Ren, Ding -Fu Shao, Evgeny Y. Tsymbal, Rohan Mishra

Summary: The recent observation of ferroelectricity in binary metal oxides, such as HfO2, ZrO2, Hf0.5Zr0.5O2, and Ga2O3, has attracted much attention. Hole doping is proposed to play a key role in stabilizing polar phases in these oxides. First-principles calculations demonstrate that holes mainly occupy one of the oxygen sublattices and their localization enhances the electrostatic energy of the system, making the polar phase more stable at high concentrations. The electrostatic mechanism is responsible for the stabilization of the ferroelectric phase in HfO2 doped with elements that introduce holes to the system.

PHYSICAL REVIEW MATERIALS (2023)

Article Multidisciplinary Sciences

Anomalous spin current anisotropy in a noncollinear antiferromagnet

Cuimei Cao, Shiwei Chen, Rui-Chun Xiao, Zengtai Zhu, Guoqiang Yu, Yangping Wang, Xuepeng Qiu, Liang Liu, Tieyang Zhao, Ding-Fu Shao, Yang Xu, Jingsheng Chen, Qingfeng Zhan

Summary: Cubic materials are not expected to exhibit anisotropy in transport phenomena, but we report an anomalous anisotropy of spin current in the (001) film of the noncollinear antiferromagnetic spin source Mn3Pt. This anisotropy originates from the intertwined time reversal-odd and time reversal-even spin Hall effects. By analyzing the symmetry and characterizing the current-induced spin torques in Mn3Pt-based heterostructures, we find that the spin current in Mn3Pt (001) exhibits exotic dependencies on the current direction for all spin components, deviating from that in conventional cubic systems.

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Spin-neutral tunneling anomalous Hall effect

Ding-Fu Shao, Shu-Hui Zhang, Rui-Chun Xiao, Zi-An Wang, W. J. Lu, Y. P. Sun, Evgeny Y. Tsymbal

Summary: In this study, we demonstrate the realization of a spin-neutral tunneling anomalous Hall effect (TAHE) in an antiferromagnetic (AFM) tunnel junction driven by spin-neutral currents. We show that the symmetry mismatch between the AFM electrode and the nonmagnetic barrier with strong spin-orbit coupling (SOC) results in spin-dependent momentum filtering, generating transverse Hall currents in each electrode. This finding opens up new possibilities for research in magnetoelectronics and spintronics.

PHYSICAL REVIEW B (2022)

Article Physics, Multidisciplinary

Field-induced topological Hall effect in antiferromagnetic axion insulator candidate EuIn2As2

J. Yan, Z. Z. Jiang, R. C. Xiao, W. J. Lu, W. H. Song, X. B. Zhu, X. Luo, Y. P. Sun, M. Yamashita

Summary: This study investigates the magnetotransport properties of EuIn2As2 through detailed magnetoresistance and Hall measurements, revealing anomalous Hall effect and large topological Hall effect, suggesting their origins and providing insights for realizing axion insulator states.

PHYSICAL REVIEW RESEARCH (2022)

Article Materials Science, Multidisciplinary

Charge density wave and pressure-dependent superconductivity in the kagome metal CsV3Sb5: A first-principles study

Jian-Guo Si, Wen-Jian Lu, Yu-Ping Sun, Peng-Fei Liu, Bao-Tian Wang

Summary: The origin of the charge density wave (CDW) order and the superconducting properties of CsV3Sb5 under pressure are studied using first-principles calculations. The momentum-dependent electron-phonon coupling effect is found to play an important role in the formation of CDW order, and the experimentally observed double superconducting domes can be explained by the movement of the van Hove singularity and the redistribution of the electron-phonon coupling. The main contribution to the electron-phonon coupling shifts from in-plane vibrational modes to out-of-plane modes with increasing pressure.

PHYSICAL REVIEW B (2022)

Article Materials Science, Multidisciplinary

Translating efficient fluorescence into persistent room-temperature phosphorescence by doping bipolar fluorophores into polar polymer matrix

Mengjiao Dong, Liyun Liao, Chensheng Li, Yingxiao Mu, Yanping Huo, Zhong-Min Su, Fushun Liang

Summary: This study investigates the influence of the polarity of polymer matrices on persistent room-temperature phosphorescence (pRTP). It is discovered that intense phosphorescence emission can be achieved in highly polar matrices such as polyacrylic acid (PAA). The dipole-dipole interaction between the polar fluorophore and polar matrix is proposed to stabilize the excited state and facilitate the generation of efficient room-temperature phosphorescence emissions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

High spatial resolution X-ray scintillators based on a 2D copper(i) iodide hybrid

Han-Jiang Yang, Weijia Xiang, Xiangzhou Zhang, Jin-Yun Wang, Liang-Jin Xu, Zhong-Ning Chen

Summary: This article reports a 2D copper(I)-based cluster material for X-ray imaging, which exhibits ultra-high spatial resolution, high photoluminescence efficiency, and low detection limit. The material shows excellent linear response to X-ray dose rates and light output, and has the best spatial resolution among reported lead-free metal halide hybrids.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Review Materials Science, Multidisciplinary

Interlayer and intermolecular excitons in various donor-acceptor heterostructures: applications to excitonic devices

Taek Joon Kim, Sang-hun Lee, Dayeong Kwon, Jinsoo Joo

Summary: Donor-acceptor heterostructures using organic-inorganic halide perovskites, two-dimensional transition metal dichalcogenides, pi-conjugated organic small/macro molecules, and quantum dots are promising platforms for exciton-based photonics and optoelectronics. Hetero-interlayer excitons and hetero-intermolecular excitons formed through optical and/or electrical charge transfer in various heterostructures are important quasi-particles for light emission, detection, and harvesting systems.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Designing CMOS compatible efficient ohmic contacts to WSi2N4 via surface-engineered Mo2B monolayer electrodes

Liemao Cao, Xiaohui Deng, Zhen-kun Tang, Rui Tan, Yee Sin Ang

Summary: We investigate the interface properties between WSi2N4 and Mo2B, O-modified Mo2B, and OH-modified Mo2B nanosheets. We find that WSi2N4 and Mo2B form n-type Schottky contacts, while functionalizing Mo2B with O and OH leads to the formation of both n-type and p-type ohmic contacts with WSi2N4. Additionally, we demonstrate the emergence of quasi-ohmic contact with ultralow lateral Schottky barrier and zero vertical interfacial tunneling barriers in Mo2B(OH)2-contacted WSi2N4.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Soft nanocomposites of lead bromide perovskite and polyurethane prepared via coordination chemistry for highly flexible, stable, and quaternary metal alloy-printed light emitting diodes

Ga Eun Kim, Hae-Jin Kim, Heesuk Jung, Minwoo Park

Summary: This study presents a solution to the commercialization challenges of flexible LEDs based on MAPbBr(3) by incorporating polyurethane and an In-Ga-Zn-Sn liquid alloy. The designed devices showed high flexibility, efficiency, and durability, with improved electron injection and reduced defects, making them promising for next-generation displays.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Elucidating the effects of the sidechain substitution direction on the optoelectronic properties of isomeric diketopyrrolopyrrole-based conjugated polymers for near-infrared organic phototransistors

Tao Shen, Zeng Wu, Zhen Jiang, Dongsheng Yan, Yan Zhao, Yang Wang, Yunqi Liu

Summary: Sidechain engineering is an important molecular design strategy for tuning the solid-state packing and structural ordering of conjugated polymers. The effects of sidechain direction on the optoelectronic properties of polymers and device performance were systematically investigated in this study. The results demonstrate that tuning the sidechain substitution direction can effectively improve the molecular structure and light absorption properties of polymers, providing new insights for the rational design of functional polymers.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Phase-engineering compact and flexible CsPbBr3 microcrystal films for robust X-ray detection

Lotte Clinckemalie, Bapi Pradhan, Roel Vanden Brande, Heng Zhang, Jonathan Vandenwijngaerden, Rafikul Ali Saha, Giacomo Romolini, Li Sun, Dirk Vandenbroucke, Mischa Bonn, Hai I. Wang, Elke Debroye

Summary: In this study, a facile strategy using a non-conductive polymer was proposed to fabricate stable, pinhole-free thick films. The effect of introducing a second phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport was investigated. The dual phase devices exhibited improved stability and more effective operation at higher voltages in X-ray detection.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Photoluminescence and structural phase transition relationship in Er-doped BaTiO3 model ferroelectric system

Jingye Zou, Shenglan Hao, Pascale Gemeiner, Nicolas Guiblin, Omar Ibder, Brahim Dkhil, Charles Paillard

Summary: When rare-earth ions are embedded in a ferroelectric material, their photoluminescence can serve as an all-optical probe for temperature, electric field, and mechanical stimulus. However, the impact of ferroelectric phase transitions on photoluminescence is not well understood. In this study, we demonstrate changes in the photoluminescence of green emission bands during critical ferroelectric transitions in an Er-doped BaTiO3 material. We also find that the intensity ratio and wavelength position difference of sub-peaks provide information on the phase transitions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Resonant tunneling induced large magnetoresistance in vertical van der Waals magnetic tunneling junctions based on type-II spin-gapless semiconductor VSi2P4

Jiangchao Han, Daming Zhou, Wei Yang, Chen Lv, Xinhe Wang, Guodong Wei, Weisheng Zhao, Xiaoyang Lin, Shengbo Sang

Summary: Rare type-II spin-gapless semiconductors (SGSs) have attracted increasing attention due to their unique spin properties. In this study, the interface contacts and spin transport properties of different devices composed of VSi2P4 ferromagnetic layers were investigated. The results show that VSi2P4 is a promising material for designing vertical van der Waals heterostructures with a giant tunnel magnetoresistance (TMR) in spintronic applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Design of Cr-Ba-doped γ-Ga2O3 persistent luminescence nanoparticles for ratiometric temperature sensing and encryption information transfer

Tianqi Zhao, Renagul Abdurahman, Qianting Yang, Ruxiangul Aiwaili, Xue-Bo Yin

Summary: In this study, we designed and prepared Cr and Ba-doped gamma-Ga2O3 nanoparticles to achieve near-infrared emission and enhance the emission intensity. The emission mechanism was proposed based on the trap depth, band gap, and energy levels of Cr ions. The ratiometric temperature sensing and encryption information transfer demonstrated the potential applications of this technology.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Spin-gapless semiconducting characteristics and related band topology of quaternary Heusler alloy CoFeMnSn

Shuvankar Gupta, Jyotirmoy Sau, Manoranjan Kumar, Chandan Mazumdar

Summary: In this study, a new spin-gapless semiconductor material CoFeMnSn is reported, and its stable structure and spin-polarized band structure are determined through experimental realization and theoretical calculations. The compound exhibits a high ferromagnetic transition temperature, making it excellent for room temperature applications. The nearly temperature-independent resistivity, conductivity, and carrier concentration of the compound, adherence to the Slater-Pauling rule, and the high intrinsic anomalous Hall conductivity achieved through hole doping further confirm its spin-gapless semiconductor nature. Additionally, the compound's SGS and topological properties make it suitable for spintronics and magneto-electronics devices.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Two-dimensional metal-organic nanosheets composed of single-molecule magnets: structural modulation and enhanced magnetism utilizing the steric hindrance effect

Ikumi Aratani, Yoji Horii, Yoshinori Kotani, Hitoshi Osawa, Hajime Tanida, Toshiaki Ina, Takeshi Watanabe, Yohko F. Yano, Akane Mizoguchi, Daisuke Takajo, Takashi Kajiwara

Summary: In this study, two-dimensional arrays of single-molecule magnets (SMMs) based on metal-organic frameworks (MOFs) were systematically modified through Langmuir-Blodgett methods and chemical modifications. The introduction of bulky alkoxide groups induced structural changes and perpendicular magnetic anisotropy. This research provides a promising strategy for the construction of high-density magnetic memory devices using molecular spintronics.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Eulytite-type Ba3Yb(PO4)3:Tm/Er/Ho as a high sensitivity optical thermometer over a broad temperature range

Zonghao Lei, Houhe Dong, Lijie Sun, Bing Teng, Yanfei Zou, Degao Zhong

Summary: Researchers have successfully developed four different up-conversion phosphors based on the Eulytite-type host Ba3Yb(PO4)(3). The optical temperature sensing properties of these phosphors were thoroughly investigated, and it was found that Ba3Yb(PO4)(3):Tm/Er/Ho showed potential for optical temperature measurement applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Understanding trends in conductivity in four isostructural multifunctional crystals of Se substituted bis-dithiazolyl radicals

C. Roncero-Barrero, M. A. Carvajal, J. Ribas-Arino, I. de P. R. Moreira, M. Deumal

Summary: This study computationally investigates the conductivity of four isostructural compounds with different Se contents, and reveals the parameters that define their conductivity in stable organic radical materials. The results provide insights into the influence of Se content on the conductivity and highlight the importance of considering multiple parameters in understanding the trends in conductivity.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Interplay between oxygen vacancies and cation ordering in the NiFe2O4 spinel ferrite

Remi Arras, Kedar Sharma, Lionel Calmels

Summary: In this study, we investigated the interplay between structural defects in NiFe2O4, showing that the complex formed by a Ni-Oh/Fe-Td-cation swap and a neutral oxygen vacancy is more stable than these two isolated defects, and significantly reduces the width of the minority-spin band gap.

JOURNAL OF MATERIALS CHEMISTRY C (2024)