4.6 Article

One-step selective formation of silver nanoparticles on atomic layered MoS2 by laser-induced defect engineering and photoreduction

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 5, Issue 34, Pages 8883-8892

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc01863k

Keywords

-

Funding

  1. Chinese Scholarship Council (CSC)
  2. National Science Foundation [CMMI 1068510, CMMI 1129613, CMMI 1265122]
  3. University of Nebraska-Lincoln

Ask authors/readers for more resources

Two dimensional (2D) materials decorated with noble metal nanoparticles (NPs) have attracted wide attention due to their appealing chemical and physical properties. Herein, we have developed a novel approach to controllable and selective decoration of silver NPs on atomic layered molybdenum disulfide (MoS2) by using one-step laser-induced defect engineering and photoreduction. By employing a focused micro-power laser beam, silver NPs can be rapidly (in seconds) anchored onto the irradiated area of MoS2 flakes, forming 0D/2D AgNPs@MoS2 heterostructures. The mechanism for silver growth on MoS2 flakes was based on laser-induced defect creation in a silver ion environment and silver nucleation on laser-excited MoS2 flake surfaces, as evidenced by a combination of techniques including Raman spectroscopy, atomic force microscopy and second-harmonic generation. We also found that the morphology and the growth rate of silver NPs are highly dependent on the layer thickness of MoS2 and the laser irradiation power; while the size and number density of silver NPs could be precisely controlled by varying the irradiation time as well as the silver ion concentration. Finally, AgNPs@MoS2 heterostructure micro-patterns have been successfully demonstrated via a programmed low-power laser scan, which shows great potential to be used as an efficient surface enhanced Raman scattering platform for chemical sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available